碳酸氢盐是光系统 II 中氧气进化的关键调节剂,但不是底物。

IF 2.9 3区 生物学 Q2 PLANT SCIENCES Photosynthesis Research Pub Date : 2024-10-01 Epub Date: 2024-07-22 DOI:10.1007/s11120-024-01111-8
David J Vinyard, Govindjee Govindjee
{"title":"碳酸氢盐是光系统 II 中氧气进化的关键调节剂,但不是底物。","authors":"David J Vinyard, Govindjee Govindjee","doi":"10.1007/s11120-024-01111-8","DOIUrl":null,"url":null,"abstract":"<p><p>Photosystem II (PSII) uses light energy to oxidize water and to reduce plastoquinone in the photosynthetic electron transport chain. O<sub>2</sub> is produced as a byproduct. While most members of the PSII research community agree that O<sub>2</sub> originates from water molecules, alternative hypotheses involving bicarbonate persist in the literature. In this perspective, we provide an overview of the important roles of bicarbonate in regulating PSII activity and assembly. Further, we emphasize that biochemistry, spectroscopy, and structural biology experiments have all failed to detect bicarbonate near the active site of O<sub>2</sub> evolution. While thermodynamic arguments for oxygen-centered bicarbonate oxidation are valid, the claim that bicarbonate is a substrate for photosynthetic O<sub>2</sub> evolution is challenged.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"93-99"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413114/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bicarbonate is a key regulator but not a substrate for O<sub>2</sub> evolution in Photosystem II.\",\"authors\":\"David J Vinyard, Govindjee Govindjee\",\"doi\":\"10.1007/s11120-024-01111-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photosystem II (PSII) uses light energy to oxidize water and to reduce plastoquinone in the photosynthetic electron transport chain. O<sub>2</sub> is produced as a byproduct. While most members of the PSII research community agree that O<sub>2</sub> originates from water molecules, alternative hypotheses involving bicarbonate persist in the literature. In this perspective, we provide an overview of the important roles of bicarbonate in regulating PSII activity and assembly. Further, we emphasize that biochemistry, spectroscopy, and structural biology experiments have all failed to detect bicarbonate near the active site of O<sub>2</sub> evolution. While thermodynamic arguments for oxygen-centered bicarbonate oxidation are valid, the claim that bicarbonate is a substrate for photosynthetic O<sub>2</sub> evolution is challenged.</p>\",\"PeriodicalId\":20130,\"journal\":{\"name\":\"Photosynthesis Research\",\"volume\":\" \",\"pages\":\"93-99\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413114/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthesis Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11120-024-01111-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-024-01111-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

光系统 II(PSII)在光合作用电子传递链中利用光能氧化水和还原质醌。O2 作为副产品产生。虽然 PSII 研究界的大多数成员都认为 O2 来源于水分子,但文献中仍然存在涉及碳酸氢盐的其他假说。在本文中,我们将概述碳酸氢盐在调节 PSII 活性和组装方面的重要作用。此外,我们还强调,生物化学、光谱学和结构生物学实验都未能在 O2 演化的活性位点附近检测到碳酸氢盐。虽然以氧为中心的碳酸氢盐氧化的热力学论据是有效的,但碳酸氢盐是光合作用 O2 演化底物的说法受到了质疑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bicarbonate is a key regulator but not a substrate for O2 evolution in Photosystem II.

Photosystem II (PSII) uses light energy to oxidize water and to reduce plastoquinone in the photosynthetic electron transport chain. O2 is produced as a byproduct. While most members of the PSII research community agree that O2 originates from water molecules, alternative hypotheses involving bicarbonate persist in the literature. In this perspective, we provide an overview of the important roles of bicarbonate in regulating PSII activity and assembly. Further, we emphasize that biochemistry, spectroscopy, and structural biology experiments have all failed to detect bicarbonate near the active site of O2 evolution. While thermodynamic arguments for oxygen-centered bicarbonate oxidation are valid, the claim that bicarbonate is a substrate for photosynthetic O2 evolution is challenged.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photosynthesis Research
Photosynthesis Research 生物-植物科学
CiteScore
6.90
自引率
8.10%
发文量
91
审稿时长
4.5 months
期刊介绍: Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.
期刊最新文献
Machine learning models for segmentation and classification of cyanobacterial cells. Aquatic plant Myriophyllum spicatum displays contrasting morphological, photosynthetic, and transcriptomic responses between its aquatic and terrestrial morphotypes. Elucidating light-induced changes in excitation energy transfer of photosystem I and II in whole cells of two model cyanobacteria. Primary charge separation in Chloroflexus aurantiacus reaction centers at room temperature: ultrafast transient absorption measurements on QA-depleted preparations with native and chemically modified bacteriopheophytin composition. Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1