Dong-Sheng Fu, Alimujiang Adili, Xuan Chen, Jian-Zhu Li, Aikeremu Muheremu
{"title":"驱动臂丛神经损伤肌肉挛缩的异常基因和途径:机器学习方法","authors":"Dong-Sheng Fu, Alimujiang Adili, Xuan Chen, Jian-Zhu Li, Aikeremu Muheremu","doi":"10.1016/j.slast.2024.100166","DOIUrl":null,"url":null,"abstract":"<div><p>In order to clarify the pathways closely linked to denervated muscle contracture, this work uses IoMT-enabled healthcare stratergies to examine changes in gene expression patterns inside atrophic muscles following brachial plexus damage. The gene expression Omnibus (GEO) database searching was used to locate the dataset GSE137606, which is connected to brachial plexus injuries. Strict criteria (|logFC|≥2 & adj.<em>p</em> < 0.05) were used to extract differentially expressed genes (DEGs). To identify dysregulated activities and pathways in denervated muscles, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Gene Set Enrichment Analysis (GSEA) were used. Hub genes were found using Cytoscape software's algorithms, which took into account parameters like as proximity, degree, and MNC. Their expression, enriched pathways, and correlations were then examined. The results showed that 316 DEGs were predominantly concentrated in muscle-related processes such as tissue formation and contraction pathways. Of these, 297 DEGs were highly expressed in denervated muscles, whereas 19 DEGs were weakly expressed. GSEA showed improvements in the contraction of striated and skeletal muscles. In addition, it was shown that in denervated muscles, Myod1, Myog, Myh7, Myl2, Tnnt2, and Tnni1 were elevated hub genes with enriched pathways such adrenergic signaling and tight junction. These results point to possible therapeutic targets for denervated muscular contracture, including Myod1, Myog, Myh7, Myl2, Tnnt2, and Tnni1. This highlights treatment options for this ailment which enhances the mental state of patient.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"29 4","pages":"Article 100166"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000487/pdfft?md5=c3f69273988f22860e860cc67b0b2519&pid=1-s2.0-S2472630324000487-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Abnormal genes and pathways that drive muscle contracture from brachial plexus injuries: Towards machine learning approach\",\"authors\":\"Dong-Sheng Fu, Alimujiang Adili, Xuan Chen, Jian-Zhu Li, Aikeremu Muheremu\",\"doi\":\"10.1016/j.slast.2024.100166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to clarify the pathways closely linked to denervated muscle contracture, this work uses IoMT-enabled healthcare stratergies to examine changes in gene expression patterns inside atrophic muscles following brachial plexus damage. The gene expression Omnibus (GEO) database searching was used to locate the dataset GSE137606, which is connected to brachial plexus injuries. Strict criteria (|logFC|≥2 & adj.<em>p</em> < 0.05) were used to extract differentially expressed genes (DEGs). To identify dysregulated activities and pathways in denervated muscles, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Gene Set Enrichment Analysis (GSEA) were used. Hub genes were found using Cytoscape software's algorithms, which took into account parameters like as proximity, degree, and MNC. Their expression, enriched pathways, and correlations were then examined. The results showed that 316 DEGs were predominantly concentrated in muscle-related processes such as tissue formation and contraction pathways. Of these, 297 DEGs were highly expressed in denervated muscles, whereas 19 DEGs were weakly expressed. GSEA showed improvements in the contraction of striated and skeletal muscles. In addition, it was shown that in denervated muscles, Myod1, Myog, Myh7, Myl2, Tnnt2, and Tnni1 were elevated hub genes with enriched pathways such adrenergic signaling and tight junction. These results point to possible therapeutic targets for denervated muscular contracture, including Myod1, Myog, Myh7, Myl2, Tnnt2, and Tnni1. This highlights treatment options for this ailment which enhances the mental state of patient.</p></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":\"29 4\",\"pages\":\"Article 100166\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000487/pdfft?md5=c3f69273988f22860e860cc67b0b2519&pid=1-s2.0-S2472630324000487-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000487\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324000487","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Abnormal genes and pathways that drive muscle contracture from brachial plexus injuries: Towards machine learning approach
In order to clarify the pathways closely linked to denervated muscle contracture, this work uses IoMT-enabled healthcare stratergies to examine changes in gene expression patterns inside atrophic muscles following brachial plexus damage. The gene expression Omnibus (GEO) database searching was used to locate the dataset GSE137606, which is connected to brachial plexus injuries. Strict criteria (|logFC|≥2 & adj.p < 0.05) were used to extract differentially expressed genes (DEGs). To identify dysregulated activities and pathways in denervated muscles, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Gene Set Enrichment Analysis (GSEA) were used. Hub genes were found using Cytoscape software's algorithms, which took into account parameters like as proximity, degree, and MNC. Their expression, enriched pathways, and correlations were then examined. The results showed that 316 DEGs were predominantly concentrated in muscle-related processes such as tissue formation and contraction pathways. Of these, 297 DEGs were highly expressed in denervated muscles, whereas 19 DEGs were weakly expressed. GSEA showed improvements in the contraction of striated and skeletal muscles. In addition, it was shown that in denervated muscles, Myod1, Myog, Myh7, Myl2, Tnnt2, and Tnni1 were elevated hub genes with enriched pathways such adrenergic signaling and tight junction. These results point to possible therapeutic targets for denervated muscular contracture, including Myod1, Myog, Myh7, Myl2, Tnnt2, and Tnni1. This highlights treatment options for this ailment which enhances the mental state of patient.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.