Frances W Hooper, Jonathan Morrow, Jasmine Rodriguez, Claire Webb
{"title":"CRISPR/Cas9的应用教学:利用非洲松石鳉鱼作为衰老和老年相关疾病的新型模型。","authors":"Frances W Hooper, Jonathan Morrow, Jasmine Rodriguez, Claire Webb","doi":"10.59390/XZQL5300","DOIUrl":null,"url":null,"abstract":"<p><p>The development of genome editing technologies, including the novel CRISPR/Cas9 technique, has advanced scientific research concerning the contribution of genetics to disease through the creation of new model organisms. The subject of this review is a 2015 study done by Harel et al. from the journal <i>Cell</i>. This study is a prime example of using CRISPR/Cas9 to create a new model organism to accurately model the effects of aging and age-related diseases on a short-lived vertebrate. This study found that the African turquoise killifish is a reliable model to study the physiological process of aging due to its compressed lifespan. In addition, it provides a genotype-to-phenotype platform to study genes related to the hallmarks of aging and age-related diseases. This paper demonstrates this by showing that killifish deficient in the protein subunit of telomerase display telomerase-related pathologies faster than other established vertebrate models. From a teaching perspective, this paper could be used as a resource for educators to teach students about new technologies emerging in the field of neuroscience and the importance of model organisms. Specifically, for upper-level undergraduate students, this paper could serve as a real-world example of how scientific techniques such as CRISPR/Cas9 could be used to answer scientific questions. Further, it shows how these techniques could bring forward new model organisms better suited to answer the scientific questions being asked. Learning these techniques and being open minded to new approaches will be advantageous to students' future careers in science.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":"20 3","pages":"R5-R8"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256378/pdf/","citationCount":"0","resultStr":"{\"title\":\"Teaching the Applications of CRISPR/Cas9: Using the African Turquoise Killifish as a Novel Model of Aging and Age-Related Diseases.\",\"authors\":\"Frances W Hooper, Jonathan Morrow, Jasmine Rodriguez, Claire Webb\",\"doi\":\"10.59390/XZQL5300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of genome editing technologies, including the novel CRISPR/Cas9 technique, has advanced scientific research concerning the contribution of genetics to disease through the creation of new model organisms. The subject of this review is a 2015 study done by Harel et al. from the journal <i>Cell</i>. This study is a prime example of using CRISPR/Cas9 to create a new model organism to accurately model the effects of aging and age-related diseases on a short-lived vertebrate. This study found that the African turquoise killifish is a reliable model to study the physiological process of aging due to its compressed lifespan. In addition, it provides a genotype-to-phenotype platform to study genes related to the hallmarks of aging and age-related diseases. This paper demonstrates this by showing that killifish deficient in the protein subunit of telomerase display telomerase-related pathologies faster than other established vertebrate models. From a teaching perspective, this paper could be used as a resource for educators to teach students about new technologies emerging in the field of neuroscience and the importance of model organisms. Specifically, for upper-level undergraduate students, this paper could serve as a real-world example of how scientific techniques such as CRISPR/Cas9 could be used to answer scientific questions. Further, it shows how these techniques could bring forward new model organisms better suited to answer the scientific questions being asked. Learning these techniques and being open minded to new approaches will be advantageous to students' future careers in science.</p>\",\"PeriodicalId\":74004,\"journal\":{\"name\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"volume\":\"20 3\",\"pages\":\"R5-R8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256378/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59390/XZQL5300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59390/XZQL5300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Teaching the Applications of CRISPR/Cas9: Using the African Turquoise Killifish as a Novel Model of Aging and Age-Related Diseases.
The development of genome editing technologies, including the novel CRISPR/Cas9 technique, has advanced scientific research concerning the contribution of genetics to disease through the creation of new model organisms. The subject of this review is a 2015 study done by Harel et al. from the journal Cell. This study is a prime example of using CRISPR/Cas9 to create a new model organism to accurately model the effects of aging and age-related diseases on a short-lived vertebrate. This study found that the African turquoise killifish is a reliable model to study the physiological process of aging due to its compressed lifespan. In addition, it provides a genotype-to-phenotype platform to study genes related to the hallmarks of aging and age-related diseases. This paper demonstrates this by showing that killifish deficient in the protein subunit of telomerase display telomerase-related pathologies faster than other established vertebrate models. From a teaching perspective, this paper could be used as a resource for educators to teach students about new technologies emerging in the field of neuroscience and the importance of model organisms. Specifically, for upper-level undergraduate students, this paper could serve as a real-world example of how scientific techniques such as CRISPR/Cas9 could be used to answer scientific questions. Further, it shows how these techniques could bring forward new model organisms better suited to answer the scientific questions being asked. Learning these techniques and being open minded to new approaches will be advantageous to students' future careers in science.