使用多目标优化算法分析充气轮胎包络行为特征对半挂车悬架系统性能的影响

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY alexandria engineering journal Pub Date : 2024-07-22 DOI:10.1016/j.aej.2024.07.063
{"title":"使用多目标优化算法分析充气轮胎包络行为特征对半挂车悬架系统性能的影响","authors":"","doi":"10.1016/j.aej.2024.07.063","DOIUrl":null,"url":null,"abstract":"<div><p>The interaction between a vehicle's tire and the road surface is pivotal for a driver's control over the vehicle's movements. It serves as the fundamental link between the vehicle and the road. The modeling of tires holds significant importance in contemporary vehicle design, playing a critical role in assessing aspects such as vehicle handling, ride comfort, and road load analysis. This study focuses on investigating the impact of the enveloping behavior characteristics of a pneumatic tire on the performance of a suspension system. The analysis of the vehicle's ride comfort utilizes a half-car model. Unlike a previous model with a single point of contact with the road, the presented suspension system, coupled with a four-degree-of-freedom rigid ring tire model, offers a more precise estimation of both ride comfort and road holding. The primary emphasis of this research lies in the modeling and evaluation of the proposed suspension system's performance. A comprehensive computer model of the entire system is developed using MATLAB software. This work enhances the existing framework by incorporating both a Multi-Objective Genetic Algorithm (MOGA) and a Multi-Objective Particle Swarm Optimization (MOPSO) to optimize the damping and stiffness coefficients of the passive suspension. This approach allows for a detailed comparison of the optimization capabilities and effectiveness of both algorithms in refining vehicle ride comfort. The results from MATLAB simulations highlight performance improvements, and the comparative analysis of MOGA and MOPSO provides insights into the selection of optimization techniques for suspension system design.</p></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110016824007968/pdfft?md5=a901acaf67113520e591825946a5831e&pid=1-s2.0-S1110016824007968-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of pneumatic tire enveloping behavior characteristics on the performance of a half car suspension system using multi-objective optimization algorithms\",\"authors\":\"\",\"doi\":\"10.1016/j.aej.2024.07.063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The interaction between a vehicle's tire and the road surface is pivotal for a driver's control over the vehicle's movements. It serves as the fundamental link between the vehicle and the road. The modeling of tires holds significant importance in contemporary vehicle design, playing a critical role in assessing aspects such as vehicle handling, ride comfort, and road load analysis. This study focuses on investigating the impact of the enveloping behavior characteristics of a pneumatic tire on the performance of a suspension system. The analysis of the vehicle's ride comfort utilizes a half-car model. Unlike a previous model with a single point of contact with the road, the presented suspension system, coupled with a four-degree-of-freedom rigid ring tire model, offers a more precise estimation of both ride comfort and road holding. The primary emphasis of this research lies in the modeling and evaluation of the proposed suspension system's performance. A comprehensive computer model of the entire system is developed using MATLAB software. This work enhances the existing framework by incorporating both a Multi-Objective Genetic Algorithm (MOGA) and a Multi-Objective Particle Swarm Optimization (MOPSO) to optimize the damping and stiffness coefficients of the passive suspension. This approach allows for a detailed comparison of the optimization capabilities and effectiveness of both algorithms in refining vehicle ride comfort. The results from MATLAB simulations highlight performance improvements, and the comparative analysis of MOGA and MOPSO provides insights into the selection of optimization techniques for suspension system design.</p></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110016824007968/pdfft?md5=a901acaf67113520e591825946a5831e&pid=1-s2.0-S1110016824007968-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016824007968\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824007968","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

汽车轮胎与路面之间的相互作用是驾驶员控制汽车行驶的关键。它是车辆与路面之间的基本纽带。轮胎建模在当代车辆设计中具有重要意义,在评估车辆操控性、乘坐舒适性和路面载荷分析等方面发挥着关键作用。本研究的重点是调查充气轮胎的包络行为特征对悬挂系统性能的影响。对车辆行驶舒适性的分析采用了半车模型。与之前的单点接触路面模型不同,本研究提出的悬架系统与四自由度刚性环形轮胎模型相结合,可更精确地估算乘坐舒适性和路面保持性。本研究的重点在于对所提出的悬架系统性能进行建模和评估。使用 MATLAB 软件开发了整个系统的综合计算机模型。这项工作通过结合多目标遗传算法 (MOGA) 和多目标粒子群优化 (MOPSO) 来优化被动悬架的阻尼和刚度系数,从而增强了现有框架。通过这种方法,可以详细比较两种算法在改善车辆驾乘舒适性方面的优化能力和有效性。MATLAB 仿真的结果凸显了性能的提升,而 MOGA 和 MOPSO 的对比分析则为悬架系统设计中优化技术的选择提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of pneumatic tire enveloping behavior characteristics on the performance of a half car suspension system using multi-objective optimization algorithms

The interaction between a vehicle's tire and the road surface is pivotal for a driver's control over the vehicle's movements. It serves as the fundamental link between the vehicle and the road. The modeling of tires holds significant importance in contemporary vehicle design, playing a critical role in assessing aspects such as vehicle handling, ride comfort, and road load analysis. This study focuses on investigating the impact of the enveloping behavior characteristics of a pneumatic tire on the performance of a suspension system. The analysis of the vehicle's ride comfort utilizes a half-car model. Unlike a previous model with a single point of contact with the road, the presented suspension system, coupled with a four-degree-of-freedom rigid ring tire model, offers a more precise estimation of both ride comfort and road holding. The primary emphasis of this research lies in the modeling and evaluation of the proposed suspension system's performance. A comprehensive computer model of the entire system is developed using MATLAB software. This work enhances the existing framework by incorporating both a Multi-Objective Genetic Algorithm (MOGA) and a Multi-Objective Particle Swarm Optimization (MOPSO) to optimize the damping and stiffness coefficients of the passive suspension. This approach allows for a detailed comparison of the optimization capabilities and effectiveness of both algorithms in refining vehicle ride comfort. The results from MATLAB simulations highlight performance improvements, and the comparative analysis of MOGA and MOPSO provides insights into the selection of optimization techniques for suspension system design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
期刊最新文献
Safe operations of a reach stacker by computer vision in an automated container terminal Letter to editor: ICMAACS and history of its mathematical awards Parameter-based RNN micro-interface inversion model for wet friction components morphology A novel generalized nonlinear fractional grey Bernoulli model and its application State of charge estimation of lithium batteries in wide temperature range based on MSIABC-AEKF algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1