Priya Paulachan, René Hammer, Joerg Siegert, Ingo Wiesler, Roland Brunner
{"title":"利用声学干涉测量法对三维互连技术中的亚微米级裂纹进行快速在线故障分析","authors":"Priya Paulachan, René Hammer, Joerg Siegert, Ingo Wiesler, Roland Brunner","doi":"10.1038/s44172-024-00247-8","DOIUrl":null,"url":null,"abstract":"More than Moore technology is driving semiconductor devices towards higher complexity and further miniaturization. Device miniaturization strongly impacts failure analysis (FA), since it triggers the need for non-destructive approaches with high resolution in combination with cost and time efficient execution. Conventional scanning acoustic microscopy (SAM) is an indispensable tool for failure analysis in the semiconductor industry, however resolution and penetration capabilities are strongly limited by the transducer frequency. In this work, we conduct an acoustic interferometry approach, based on a SAM-setup utilizing 100 MHz lenses and enabling not only sufficient penetration depth but also high resolution for efficient in-line FA of Through Silicon Vias (TSVs). Accompanied elastodynamic finite integration technique-based simulations, provide an in-depth understanding concerning the acoustic wave excitation and propagation. We show that the controlled excitation of surface acoustic waves extends the contingency towards the detection of nm-sized cracks, an essential accomplishment for modern FA of 3D-integration technologies. Dr Roland Brunner and colleagues demonstrate how acoustic interferometry can be used to conduct a non-destructive and high-resolution failure analysis of through-silicon vias. They analyse the detection of nanometre-scale cracks and discuss how the opening angle of the acoustic lens impacts on performance.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00247-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Fast in-line failure analysis of sub-micron-sized cracks in 3D interconnect technologies utilizing acoustic interferometry\",\"authors\":\"Priya Paulachan, René Hammer, Joerg Siegert, Ingo Wiesler, Roland Brunner\",\"doi\":\"10.1038/s44172-024-00247-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More than Moore technology is driving semiconductor devices towards higher complexity and further miniaturization. Device miniaturization strongly impacts failure analysis (FA), since it triggers the need for non-destructive approaches with high resolution in combination with cost and time efficient execution. Conventional scanning acoustic microscopy (SAM) is an indispensable tool for failure analysis in the semiconductor industry, however resolution and penetration capabilities are strongly limited by the transducer frequency. In this work, we conduct an acoustic interferometry approach, based on a SAM-setup utilizing 100 MHz lenses and enabling not only sufficient penetration depth but also high resolution for efficient in-line FA of Through Silicon Vias (TSVs). Accompanied elastodynamic finite integration technique-based simulations, provide an in-depth understanding concerning the acoustic wave excitation and propagation. We show that the controlled excitation of surface acoustic waves extends the contingency towards the detection of nm-sized cracks, an essential accomplishment for modern FA of 3D-integration technologies. Dr Roland Brunner and colleagues demonstrate how acoustic interferometry can be used to conduct a non-destructive and high-resolution failure analysis of through-silicon vias. They analyse the detection of nanometre-scale cracks and discuss how the opening angle of the acoustic lens impacts on performance.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00247-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00247-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00247-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
超越摩尔定律的技术正推动半导体器件向着更高的复杂性和进一步微型化的方向发展。器件微型化对故障分析(FA)产生了强烈的影响,因为它引发了对高分辨率、低成本、高效率的非破坏性方法的需求。传统的扫描声学显微镜(SAM)是半导体行业故障分析不可或缺的工具,但其分辨率和穿透能力受到换能器频率的严重限制。在这项工作中,我们基于利用 100 MHz 镜头的 SAM 设置,采用声学干涉测量方法,不仅能获得足够的穿透深度,还能获得高分辨率,从而对硅通孔(TSV)进行有效的在线故障分析。伴随着基于弹性动力学有限积分技术的模拟,我们对声波的激发和传播有了深入的了解。我们的研究表明,表面声波的受控激发扩展了对纳米级裂纹的检测能力,这是现代三维集成技术 FA 的一项重要成就。罗兰-布鲁纳(Roland Brunner)博士及其同事展示了如何利用声学干涉测量法对硅通孔进行非破坏性和高分辨率的故障分析。他们分析了纳米级裂纹的检测,并讨论了声透镜的开口角度对性能的影响。
Fast in-line failure analysis of sub-micron-sized cracks in 3D interconnect technologies utilizing acoustic interferometry
More than Moore technology is driving semiconductor devices towards higher complexity and further miniaturization. Device miniaturization strongly impacts failure analysis (FA), since it triggers the need for non-destructive approaches with high resolution in combination with cost and time efficient execution. Conventional scanning acoustic microscopy (SAM) is an indispensable tool for failure analysis in the semiconductor industry, however resolution and penetration capabilities are strongly limited by the transducer frequency. In this work, we conduct an acoustic interferometry approach, based on a SAM-setup utilizing 100 MHz lenses and enabling not only sufficient penetration depth but also high resolution for efficient in-line FA of Through Silicon Vias (TSVs). Accompanied elastodynamic finite integration technique-based simulations, provide an in-depth understanding concerning the acoustic wave excitation and propagation. We show that the controlled excitation of surface acoustic waves extends the contingency towards the detection of nm-sized cracks, an essential accomplishment for modern FA of 3D-integration technologies. Dr Roland Brunner and colleagues demonstrate how acoustic interferometry can be used to conduct a non-destructive and high-resolution failure analysis of through-silicon vias. They analyse the detection of nanometre-scale cracks and discuss how the opening angle of the acoustic lens impacts on performance.