利用声学干涉测量法对三维互连技术中的亚微米级裂纹进行快速在线故障分析

Priya Paulachan, René Hammer, Joerg Siegert, Ingo Wiesler, Roland Brunner
{"title":"利用声学干涉测量法对三维互连技术中的亚微米级裂纹进行快速在线故障分析","authors":"Priya Paulachan, René Hammer, Joerg Siegert, Ingo Wiesler, Roland Brunner","doi":"10.1038/s44172-024-00247-8","DOIUrl":null,"url":null,"abstract":"More than Moore technology is driving semiconductor devices towards higher complexity and further miniaturization. Device miniaturization strongly impacts failure analysis (FA), since it triggers the need for non-destructive approaches with high resolution in combination with cost and time efficient execution. Conventional scanning acoustic microscopy (SAM) is an indispensable tool for failure analysis in the semiconductor industry, however resolution and penetration capabilities are strongly limited by the transducer frequency. In this work, we conduct an acoustic interferometry approach, based on a SAM-setup utilizing 100 MHz lenses and enabling not only sufficient penetration depth but also high resolution for efficient in-line FA of Through Silicon Vias (TSVs). Accompanied elastodynamic finite integration technique-based simulations, provide an in-depth understanding concerning the acoustic wave excitation and propagation. We show that the controlled excitation of surface acoustic waves extends the contingency towards the detection of nm-sized cracks, an essential accomplishment for modern FA of 3D-integration technologies. Dr Roland Brunner and colleagues demonstrate how acoustic interferometry can be used to conduct a non-destructive and high-resolution failure analysis of through-silicon vias. They analyse the detection of nanometre-scale cracks and discuss how the opening angle of the acoustic lens impacts on performance.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00247-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Fast in-line failure analysis of sub-micron-sized cracks in 3D interconnect technologies utilizing acoustic interferometry\",\"authors\":\"Priya Paulachan, René Hammer, Joerg Siegert, Ingo Wiesler, Roland Brunner\",\"doi\":\"10.1038/s44172-024-00247-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More than Moore technology is driving semiconductor devices towards higher complexity and further miniaturization. Device miniaturization strongly impacts failure analysis (FA), since it triggers the need for non-destructive approaches with high resolution in combination with cost and time efficient execution. Conventional scanning acoustic microscopy (SAM) is an indispensable tool for failure analysis in the semiconductor industry, however resolution and penetration capabilities are strongly limited by the transducer frequency. In this work, we conduct an acoustic interferometry approach, based on a SAM-setup utilizing 100 MHz lenses and enabling not only sufficient penetration depth but also high resolution for efficient in-line FA of Through Silicon Vias (TSVs). Accompanied elastodynamic finite integration technique-based simulations, provide an in-depth understanding concerning the acoustic wave excitation and propagation. We show that the controlled excitation of surface acoustic waves extends the contingency towards the detection of nm-sized cracks, an essential accomplishment for modern FA of 3D-integration technologies. Dr Roland Brunner and colleagues demonstrate how acoustic interferometry can be used to conduct a non-destructive and high-resolution failure analysis of through-silicon vias. They analyse the detection of nanometre-scale cracks and discuss how the opening angle of the acoustic lens impacts on performance.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00247-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00247-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00247-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超越摩尔定律的技术正推动半导体器件向着更高的复杂性和进一步微型化的方向发展。器件微型化对故障分析(FA)产生了强烈的影响,因为它引发了对高分辨率、低成本、高效率的非破坏性方法的需求。传统的扫描声学显微镜(SAM)是半导体行业故障分析不可或缺的工具,但其分辨率和穿透能力受到换能器频率的严重限制。在这项工作中,我们基于利用 100 MHz 镜头的 SAM 设置,采用声学干涉测量方法,不仅能获得足够的穿透深度,还能获得高分辨率,从而对硅通孔(TSV)进行有效的在线故障分析。伴随着基于弹性动力学有限积分技术的模拟,我们对声波的激发和传播有了深入的了解。我们的研究表明,表面声波的受控激发扩展了对纳米级裂纹的检测能力,这是现代三维集成技术 FA 的一项重要成就。罗兰-布鲁纳(Roland Brunner)博士及其同事展示了如何利用声学干涉测量法对硅通孔进行非破坏性和高分辨率的故障分析。他们分析了纳米级裂纹的检测,并讨论了声透镜的开口角度对性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast in-line failure analysis of sub-micron-sized cracks in 3D interconnect technologies utilizing acoustic interferometry
More than Moore technology is driving semiconductor devices towards higher complexity and further miniaturization. Device miniaturization strongly impacts failure analysis (FA), since it triggers the need for non-destructive approaches with high resolution in combination with cost and time efficient execution. Conventional scanning acoustic microscopy (SAM) is an indispensable tool for failure analysis in the semiconductor industry, however resolution and penetration capabilities are strongly limited by the transducer frequency. In this work, we conduct an acoustic interferometry approach, based on a SAM-setup utilizing 100 MHz lenses and enabling not only sufficient penetration depth but also high resolution for efficient in-line FA of Through Silicon Vias (TSVs). Accompanied elastodynamic finite integration technique-based simulations, provide an in-depth understanding concerning the acoustic wave excitation and propagation. We show that the controlled excitation of surface acoustic waves extends the contingency towards the detection of nm-sized cracks, an essential accomplishment for modern FA of 3D-integration technologies. Dr Roland Brunner and colleagues demonstrate how acoustic interferometry can be used to conduct a non-destructive and high-resolution failure analysis of through-silicon vias. They analyse the detection of nanometre-scale cracks and discuss how the opening angle of the acoustic lens impacts on performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A platform-agnostic deep reinforcement learning framework for effective Sim2Real transfer towards autonomous driving Cryogenic quantum computer control signal generation using high-electron-mobility transistors A semi-transparent thermoelectric glazing nanogenerator with aluminium doped zinc oxide and copper iodide thin films Towards a general computed tomography image segmentation model for anatomical structures and lesions 5 G new radio fiber-wireless converged systems by injection locking multi-optical carrier into directly-modulated lasers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1