{"title":"用短瞬态脉冲Τuning气泡超材料的响应","authors":"Vicky Kyrimi","doi":"10.1007/s00419-024-02655-w","DOIUrl":null,"url":null,"abstract":"<div><p>Bubble-based metamaterials have been extensively studied both theoretically and experimentally thanks to their simple geometry and their ability to manipulate acoustic waves. The latter is partly dependent on the structural characteristics of the metamaterial and partly dependent on the incident acoustic wave. Initially, the selection of specific structural characteristics is explained by presenting the Fourier transformations of the reflected waves for different arrangements of a bubbly meta-screen subject to Gaussian excitation. Next, the numerical study focuses on the changes induced to the response of a bubbly meta-screen, subject to different excitation pulses. For complex frequency excitation the bubbles delay to return to their equilibrium position for a couple of moments, hence the energy is stored in the system during those moments. This research provides a new strategy to actively control the response of a bubbly meta-screen and seeks to inspire future studies towards further optimization of the incident pulse based on the functionalities in need.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 10","pages":"3017 - 3025"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Τuning the response of bubble-based metamaterials with short transient pulses\",\"authors\":\"Vicky Kyrimi\",\"doi\":\"10.1007/s00419-024-02655-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bubble-based metamaterials have been extensively studied both theoretically and experimentally thanks to their simple geometry and their ability to manipulate acoustic waves. The latter is partly dependent on the structural characteristics of the metamaterial and partly dependent on the incident acoustic wave. Initially, the selection of specific structural characteristics is explained by presenting the Fourier transformations of the reflected waves for different arrangements of a bubbly meta-screen subject to Gaussian excitation. Next, the numerical study focuses on the changes induced to the response of a bubbly meta-screen, subject to different excitation pulses. For complex frequency excitation the bubbles delay to return to their equilibrium position for a couple of moments, hence the energy is stored in the system during those moments. This research provides a new strategy to actively control the response of a bubbly meta-screen and seeks to inspire future studies towards further optimization of the incident pulse based on the functionalities in need.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"94 10\",\"pages\":\"3017 - 3025\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02655-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02655-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Τuning the response of bubble-based metamaterials with short transient pulses
Bubble-based metamaterials have been extensively studied both theoretically and experimentally thanks to their simple geometry and their ability to manipulate acoustic waves. The latter is partly dependent on the structural characteristics of the metamaterial and partly dependent on the incident acoustic wave. Initially, the selection of specific structural characteristics is explained by presenting the Fourier transformations of the reflected waves for different arrangements of a bubbly meta-screen subject to Gaussian excitation. Next, the numerical study focuses on the changes induced to the response of a bubbly meta-screen, subject to different excitation pulses. For complex frequency excitation the bubbles delay to return to their equilibrium position for a couple of moments, hence the energy is stored in the system during those moments. This research provides a new strategy to actively control the response of a bubbly meta-screen and seeks to inspire future studies towards further optimization of the incident pulse based on the functionalities in need.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.