Lee A. Rozema, Teodor Strömberg, Huan Cao, Yu Guo, Bi-Heng Liu, Philip Walther
{"title":"量子力学中不定因果顺序的实验问题","authors":"Lee A. Rozema, Teodor Strömberg, Huan Cao, Yu Guo, Bi-Heng Liu, Philip Walther","doi":"10.1038/s42254-024-00739-8","DOIUrl":null,"url":null,"abstract":"In the past decade, the toolkit of quantum information has been expanded to include processes in which the basic operations do not have definite causal relations. Originally considered in the context of the unification of quantum mechanics and general relativity, these causally indefinite processes have been shown to offer advantages in a wide variety of quantum-information processing tasks, ranging from quantum computation to quantum metrology. Here, we overview these advantages and the experimental efforts to realize them. We survey both the experimental techniques employed and the theoretical methods developed in support of the experiments, before discussing the interpretations of current experimental results and giving an outlook on the future of the field. Quantum superpositions of orders of operations can be used to create an indefinite causal order. This Review covers experimental implementations of such processes, focusing on characterization techniques, and discusses their applications and limitations.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 8","pages":"483-499"},"PeriodicalIF":44.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental aspects of indefinite causal order in quantum mechanics\",\"authors\":\"Lee A. Rozema, Teodor Strömberg, Huan Cao, Yu Guo, Bi-Heng Liu, Philip Walther\",\"doi\":\"10.1038/s42254-024-00739-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past decade, the toolkit of quantum information has been expanded to include processes in which the basic operations do not have definite causal relations. Originally considered in the context of the unification of quantum mechanics and general relativity, these causally indefinite processes have been shown to offer advantages in a wide variety of quantum-information processing tasks, ranging from quantum computation to quantum metrology. Here, we overview these advantages and the experimental efforts to realize them. We survey both the experimental techniques employed and the theoretical methods developed in support of the experiments, before discussing the interpretations of current experimental results and giving an outlook on the future of the field. Quantum superpositions of orders of operations can be used to create an indefinite causal order. This Review covers experimental implementations of such processes, focusing on characterization techniques, and discusses their applications and limitations.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"6 8\",\"pages\":\"483-499\"},\"PeriodicalIF\":44.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-024-00739-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00739-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Experimental aspects of indefinite causal order in quantum mechanics
In the past decade, the toolkit of quantum information has been expanded to include processes in which the basic operations do not have definite causal relations. Originally considered in the context of the unification of quantum mechanics and general relativity, these causally indefinite processes have been shown to offer advantages in a wide variety of quantum-information processing tasks, ranging from quantum computation to quantum metrology. Here, we overview these advantages and the experimental efforts to realize them. We survey both the experimental techniques employed and the theoretical methods developed in support of the experiments, before discussing the interpretations of current experimental results and giving an outlook on the future of the field. Quantum superpositions of orders of operations can be used to create an indefinite causal order. This Review covers experimental implementations of such processes, focusing on characterization techniques, and discusses their applications and limitations.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.