Hugo Cintas;Frédéric Wrobel;Frédéric Saigné;Marine Ruffenach;Damien Herrera;Françoise Bezerra;Julien Mekki;Athina Varotsou
{"title":"平流层气球飞行期间质子、电子和光子通量测量与模拟","authors":"Hugo Cintas;Frédéric Wrobel;Frédéric Saigné;Marine Ruffenach;Damien Herrera;Françoise Bezerra;Julien Mekki;Athina Varotsou","doi":"10.1109/TNS.2024.3430044","DOIUrl":null,"url":null,"abstract":"This article compares three models of the atmospheric radiative environment: 1) model of atmospheric ionizing radiative effects (MAIREs); 2) Excel-based Program for calculating Atmospheric Cosmic-ray Spectrum (EXPACS); and 3) radiation atmospheric model for single-event effect simulation (RAMSEES) to experimental fluxes measured at different altitudes. The PIX Centre National d’Etudes Spatiales (CNES) instrument recorded the fluxes during five stratospheric flights. There is no standard way to model the atmospheric radiative environment today. Each model uses its own Monte Carlo toolkit, modeling the atmosphere and primary particles. The RAMSEES was created by Geant4 simulation of the Extensive Air Shower (EAS) phenomenon generated by highly energetic Galactic Cosmic Rays (GCRs) in 100 km of atmosphere. By using PIX fluxes, this article aims to benchmark the models with experimental data at multiple altitudes. Three integral fluxes were used in this article at a comparison point: 1) photons >0.823 MeV; 2) electrons >10.27 MeV; and 3) protons >80 MeV. MAIRE shows good agreement with all the experimental fluxes from 5 to 40 km. MAIRE predictions show remarkable agreement with the PIX photon fluxes. EXPACS predictions are in a magnitude order of PIX measurements but tend to underestimate the fluxes. Finally, RAMSEES predictions agree with PIX fluxes for protons, electrons, and photons at altitudes of 5–32.5 km. Moreover, RAMSEES shows significant agreement with PIX proton fluxes.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"71 8","pages":"1638-1644"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton, Electron, and Photon Flux Measurement and Simulation During Stratospheric Balloon Flights\",\"authors\":\"Hugo Cintas;Frédéric Wrobel;Frédéric Saigné;Marine Ruffenach;Damien Herrera;Françoise Bezerra;Julien Mekki;Athina Varotsou\",\"doi\":\"10.1109/TNS.2024.3430044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article compares three models of the atmospheric radiative environment: 1) model of atmospheric ionizing radiative effects (MAIREs); 2) Excel-based Program for calculating Atmospheric Cosmic-ray Spectrum (EXPACS); and 3) radiation atmospheric model for single-event effect simulation (RAMSEES) to experimental fluxes measured at different altitudes. The PIX Centre National d’Etudes Spatiales (CNES) instrument recorded the fluxes during five stratospheric flights. There is no standard way to model the atmospheric radiative environment today. Each model uses its own Monte Carlo toolkit, modeling the atmosphere and primary particles. The RAMSEES was created by Geant4 simulation of the Extensive Air Shower (EAS) phenomenon generated by highly energetic Galactic Cosmic Rays (GCRs) in 100 km of atmosphere. By using PIX fluxes, this article aims to benchmark the models with experimental data at multiple altitudes. Three integral fluxes were used in this article at a comparison point: 1) photons >0.823 MeV; 2) electrons >10.27 MeV; and 3) protons >80 MeV. MAIRE shows good agreement with all the experimental fluxes from 5 to 40 km. MAIRE predictions show remarkable agreement with the PIX photon fluxes. EXPACS predictions are in a magnitude order of PIX measurements but tend to underestimate the fluxes. Finally, RAMSEES predictions agree with PIX fluxes for protons, electrons, and photons at altitudes of 5–32.5 km. Moreover, RAMSEES shows significant agreement with PIX proton fluxes.\",\"PeriodicalId\":13406,\"journal\":{\"name\":\"IEEE Transactions on Nuclear Science\",\"volume\":\"71 8\",\"pages\":\"1638-1644\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nuclear Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10604792/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10604792/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Proton, Electron, and Photon Flux Measurement and Simulation During Stratospheric Balloon Flights
This article compares three models of the atmospheric radiative environment: 1) model of atmospheric ionizing radiative effects (MAIREs); 2) Excel-based Program for calculating Atmospheric Cosmic-ray Spectrum (EXPACS); and 3) radiation atmospheric model for single-event effect simulation (RAMSEES) to experimental fluxes measured at different altitudes. The PIX Centre National d’Etudes Spatiales (CNES) instrument recorded the fluxes during five stratospheric flights. There is no standard way to model the atmospheric radiative environment today. Each model uses its own Monte Carlo toolkit, modeling the atmosphere and primary particles. The RAMSEES was created by Geant4 simulation of the Extensive Air Shower (EAS) phenomenon generated by highly energetic Galactic Cosmic Rays (GCRs) in 100 km of atmosphere. By using PIX fluxes, this article aims to benchmark the models with experimental data at multiple altitudes. Three integral fluxes were used in this article at a comparison point: 1) photons >0.823 MeV; 2) electrons >10.27 MeV; and 3) protons >80 MeV. MAIRE shows good agreement with all the experimental fluxes from 5 to 40 km. MAIRE predictions show remarkable agreement with the PIX photon fluxes. EXPACS predictions are in a magnitude order of PIX measurements but tend to underestimate the fluxes. Finally, RAMSEES predictions agree with PIX fluxes for protons, electrons, and photons at altitudes of 5–32.5 km. Moreover, RAMSEES shows significant agreement with PIX proton fluxes.
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.