{"title":"通过化学镀锡方法辊对辊制造用于长循环锂金属电池的亲锂锡改性铜网片","authors":"Ke-Xin Liu, Ran Tan, Zhong Zheng, Rui-Rui Zhao, Burak Ülgüt, Xin-Ping Ai, Jiang-Feng Qian","doi":"10.1007/s12598-024-02875-7","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal, with its exceptionally high theoretical capacity, emerges as the optimal anode choice for high-energy-density rechargeable batteries. Nevertheless, the practical application of lithium metal batteries (LMBs) is constrained by issues such as lithium dendrite growth and low Coulombic efficiency (CE). Herein, a roll-to-roll approach is adopted to prepare meter-scale, lithiophilic Sn-modified Cu mesh (Sn@Cu mesh) as the current collector for long-cycle lithium metal batteries. The two-dimensional (2D) nucleation mechanism on Sn@Cu mesh electrodes promotes a uniform Li flux, facilitating the deposition of Li metal in a large granular morphology. Simultaneously, experimental and computational analyses revealed that the distribution of the electric field in the Cu mesh skeleton induces Li inward growth, thereby generating a uniform, dense composite Li anode. Moreover, the Sn@Cu mesh-Li symmetrical cell demonstrates stable cycling for over 2000 h with an ultra-low 10 mV voltage polarization. In Li||Cu half-cells, the Sn@Cu mesh electrode demonstrates stable cycling for 100 cycles at a high areal capacity of 5 mAh·cm<sup>−2</sup>, achieving a CE of 99.2%. This study introduces a simple and large-scale approach for the production of lithiophilic three-dimensional (3D) current collectors, providing more possibilities for the scalable application of Li metal batteries.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"92 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roll-to-roll fabrication of lithiophilic Sn-modified Cu mesh via chemical tin plating approach for long-cycling lithium metal batteries\",\"authors\":\"Ke-Xin Liu, Ran Tan, Zhong Zheng, Rui-Rui Zhao, Burak Ülgüt, Xin-Ping Ai, Jiang-Feng Qian\",\"doi\":\"10.1007/s12598-024-02875-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium metal, with its exceptionally high theoretical capacity, emerges as the optimal anode choice for high-energy-density rechargeable batteries. Nevertheless, the practical application of lithium metal batteries (LMBs) is constrained by issues such as lithium dendrite growth and low Coulombic efficiency (CE). Herein, a roll-to-roll approach is adopted to prepare meter-scale, lithiophilic Sn-modified Cu mesh (Sn@Cu mesh) as the current collector for long-cycle lithium metal batteries. The two-dimensional (2D) nucleation mechanism on Sn@Cu mesh electrodes promotes a uniform Li flux, facilitating the deposition of Li metal in a large granular morphology. Simultaneously, experimental and computational analyses revealed that the distribution of the electric field in the Cu mesh skeleton induces Li inward growth, thereby generating a uniform, dense composite Li anode. Moreover, the Sn@Cu mesh-Li symmetrical cell demonstrates stable cycling for over 2000 h with an ultra-low 10 mV voltage polarization. In Li||Cu half-cells, the Sn@Cu mesh electrode demonstrates stable cycling for 100 cycles at a high areal capacity of 5 mAh·cm<sup>−2</sup>, achieving a CE of 99.2%. This study introduces a simple and large-scale approach for the production of lithiophilic three-dimensional (3D) current collectors, providing more possibilities for the scalable application of Li metal batteries.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02875-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02875-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Roll-to-roll fabrication of lithiophilic Sn-modified Cu mesh via chemical tin plating approach for long-cycling lithium metal batteries
Lithium metal, with its exceptionally high theoretical capacity, emerges as the optimal anode choice for high-energy-density rechargeable batteries. Nevertheless, the practical application of lithium metal batteries (LMBs) is constrained by issues such as lithium dendrite growth and low Coulombic efficiency (CE). Herein, a roll-to-roll approach is adopted to prepare meter-scale, lithiophilic Sn-modified Cu mesh (Sn@Cu mesh) as the current collector for long-cycle lithium metal batteries. The two-dimensional (2D) nucleation mechanism on Sn@Cu mesh electrodes promotes a uniform Li flux, facilitating the deposition of Li metal in a large granular morphology. Simultaneously, experimental and computational analyses revealed that the distribution of the electric field in the Cu mesh skeleton induces Li inward growth, thereby generating a uniform, dense composite Li anode. Moreover, the Sn@Cu mesh-Li symmetrical cell demonstrates stable cycling for over 2000 h with an ultra-low 10 mV voltage polarization. In Li||Cu half-cells, the Sn@Cu mesh electrode demonstrates stable cycling for 100 cycles at a high areal capacity of 5 mAh·cm−2, achieving a CE of 99.2%. This study introduces a simple and large-scale approach for the production of lithiophilic three-dimensional (3D) current collectors, providing more possibilities for the scalable application of Li metal batteries.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.