{"title":"感知星空:用于维生素检测的温和条件氧化锌缺陷开发","authors":"Anton Abramyan, Mikhail Golovin, Valeriya Zakharchenkova, Andrey Lalov, Dalibor Stanković, Oleg Bol’shakov","doi":"10.1007/s10008-024-06020-3","DOIUrl":null,"url":null,"abstract":"<p>Here, we present the preparation and electrochemical evaluation of a vitamin B2-riboflavin (RF) sensor based on hierarchically structured zinc oxide (ZnO) of the wurtzite type. The highly crystalline ZnO obtained under hydrothermal conditions from a zinc peroxocomplex has the appearance of “micro-stars,” with an average size of 10 μm. Development of unusual morphology was accompanied by significant lattice defect introduction. Zinc oxide as an electroactive additive for carbon paste electrode was studied with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV), which revealed excellent charge mobility and low resistivity. Electrochemical properties of the semiconductor allowed for development of riboflavin (RF) electrochemical sensor with an improved linearity range and a low limit of detection. The repeatability and stability of the sensor were at a satisfactory level for real-time measurements.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p>Conventional hydrothermal treatment of zinc peroxocomplex provided star-shaped zinc oxide microparticles with metal-deficient lattice. Increased defect concentration facilitated charge mobility, which helped in developing of sensor for relevant vitamin.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensing reaching the stars: mild condition ZnO defect development for vitamin detection\",\"authors\":\"Anton Abramyan, Mikhail Golovin, Valeriya Zakharchenkova, Andrey Lalov, Dalibor Stanković, Oleg Bol’shakov\",\"doi\":\"10.1007/s10008-024-06020-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here, we present the preparation and electrochemical evaluation of a vitamin B2-riboflavin (RF) sensor based on hierarchically structured zinc oxide (ZnO) of the wurtzite type. The highly crystalline ZnO obtained under hydrothermal conditions from a zinc peroxocomplex has the appearance of “micro-stars,” with an average size of 10 μm. Development of unusual morphology was accompanied by significant lattice defect introduction. Zinc oxide as an electroactive additive for carbon paste electrode was studied with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV), which revealed excellent charge mobility and low resistivity. Electrochemical properties of the semiconductor allowed for development of riboflavin (RF) electrochemical sensor with an improved linearity range and a low limit of detection. The repeatability and stability of the sensor were at a satisfactory level for real-time measurements.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3><p>Conventional hydrothermal treatment of zinc peroxocomplex provided star-shaped zinc oxide microparticles with metal-deficient lattice. Increased defect concentration facilitated charge mobility, which helped in developing of sensor for relevant vitamin.</p>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10008-024-06020-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10008-024-06020-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Sensing reaching the stars: mild condition ZnO defect development for vitamin detection
Here, we present the preparation and electrochemical evaluation of a vitamin B2-riboflavin (RF) sensor based on hierarchically structured zinc oxide (ZnO) of the wurtzite type. The highly crystalline ZnO obtained under hydrothermal conditions from a zinc peroxocomplex has the appearance of “micro-stars,” with an average size of 10 μm. Development of unusual morphology was accompanied by significant lattice defect introduction. Zinc oxide as an electroactive additive for carbon paste electrode was studied with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV), which revealed excellent charge mobility and low resistivity. Electrochemical properties of the semiconductor allowed for development of riboflavin (RF) electrochemical sensor with an improved linearity range and a low limit of detection. The repeatability and stability of the sensor were at a satisfactory level for real-time measurements.
Graphical abstract
Conventional hydrothermal treatment of zinc peroxocomplex provided star-shaped zinc oxide microparticles with metal-deficient lattice. Increased defect concentration facilitated charge mobility, which helped in developing of sensor for relevant vitamin.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.