Huma Farooq, Manzoor Ahmad Chachoo, Sajid Yousuf Bhat
{"title":"利用注意力 U-Net 优化深度估计","authors":"Huma Farooq, Manzoor Ahmad Chachoo, Sajid Yousuf Bhat","doi":"10.1007/s13198-024-02431-7","DOIUrl":null,"url":null,"abstract":"<p>Depth maps (DMs) are invaluable tools encapsulating scene information in a three-dimensional context. They have a crucial part in reconstructing the spatial layout of a scene, enabling a comprehensive understanding of object geometry. These DMs can originate from either a single image or a combination of multiple images, with the former approach referred to as monocular depth mapping. However, deriving accurate depth maps is a complex and ill-posed problem that often necessitates intricate calibration. Recent advances have turned to deep learning (DL) techniques to address these challenges. In the context of monocular depth estimation, we propose a novel methodology utilizing an Attention U-Net architecture (Attention UNet). By incorporating attention mechanisms, we bolster the network’s ability to extract salient features, particularly along object boundaries. Critically, this enhancement is achieved without introducing additional parameters to the networks, ensuring efficient model training. Our proposed approach is effective in producing high-quality depth maps with notable advantages. By leveraging the Attention UNet architecture, we substantially improve depth map accuracy, reducing the root mean square error (RMSE) by 0.23 on the benchmark NYU V2 dataset, Highlighting its supremacy compared to current state-of-the-art techniques.</p>","PeriodicalId":14463,"journal":{"name":"International Journal of System Assurance Engineering and Management","volume":"45 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing depth estimation with attention U-Net\",\"authors\":\"Huma Farooq, Manzoor Ahmad Chachoo, Sajid Yousuf Bhat\",\"doi\":\"10.1007/s13198-024-02431-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Depth maps (DMs) are invaluable tools encapsulating scene information in a three-dimensional context. They have a crucial part in reconstructing the spatial layout of a scene, enabling a comprehensive understanding of object geometry. These DMs can originate from either a single image or a combination of multiple images, with the former approach referred to as monocular depth mapping. However, deriving accurate depth maps is a complex and ill-posed problem that often necessitates intricate calibration. Recent advances have turned to deep learning (DL) techniques to address these challenges. In the context of monocular depth estimation, we propose a novel methodology utilizing an Attention U-Net architecture (Attention UNet). By incorporating attention mechanisms, we bolster the network’s ability to extract salient features, particularly along object boundaries. Critically, this enhancement is achieved without introducing additional parameters to the networks, ensuring efficient model training. Our proposed approach is effective in producing high-quality depth maps with notable advantages. By leveraging the Attention UNet architecture, we substantially improve depth map accuracy, reducing the root mean square error (RMSE) by 0.23 on the benchmark NYU V2 dataset, Highlighting its supremacy compared to current state-of-the-art techniques.</p>\",\"PeriodicalId\":14463,\"journal\":{\"name\":\"International Journal of System Assurance Engineering and Management\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of System Assurance Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13198-024-02431-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of System Assurance Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13198-024-02431-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Depth maps (DMs) are invaluable tools encapsulating scene information in a three-dimensional context. They have a crucial part in reconstructing the spatial layout of a scene, enabling a comprehensive understanding of object geometry. These DMs can originate from either a single image or a combination of multiple images, with the former approach referred to as monocular depth mapping. However, deriving accurate depth maps is a complex and ill-posed problem that often necessitates intricate calibration. Recent advances have turned to deep learning (DL) techniques to address these challenges. In the context of monocular depth estimation, we propose a novel methodology utilizing an Attention U-Net architecture (Attention UNet). By incorporating attention mechanisms, we bolster the network’s ability to extract salient features, particularly along object boundaries. Critically, this enhancement is achieved without introducing additional parameters to the networks, ensuring efficient model training. Our proposed approach is effective in producing high-quality depth maps with notable advantages. By leveraging the Attention UNet architecture, we substantially improve depth map accuracy, reducing the root mean square error (RMSE) by 0.23 on the benchmark NYU V2 dataset, Highlighting its supremacy compared to current state-of-the-art techniques.
期刊介绍:
This Journal is established with a view to cater to increased awareness for high quality research in the seamless integration of heterogeneous technologies to formulate bankable solutions to the emergent complex engineering problems.
Assurance engineering could be thought of as relating to the provision of higher confidence in the reliable and secure implementation of a system’s critical characteristic features through the espousal of a holistic approach by using a wide variety of cross disciplinary tools and techniques. Successful realization of sustainable and dependable products, systems and services involves an extensive adoption of Reliability, Quality, Safety and Risk related procedures for achieving high assurancelevels of performance; also pivotal are the management issues related to risk and uncertainty that govern the practical constraints encountered in their deployment. It is our intention to provide a platform for the modeling and analysis of large engineering systems, among the other aforementioned allied goals of systems assurance engineering, leading to the enforcement of performance enhancement measures. Achieving a fine balance between theory and practice is the primary focus. The Journal only publishes high quality papers that have passed the rigorous peer review procedure of an archival scientific Journal. The aim is an increasing number of submissions, wide circulation and a high impact factor.