从文字到世界:认知架构的组合性

Ruchira Dhar, Anders Søgaard
{"title":"从文字到世界:认知架构的组合性","authors":"Ruchira Dhar, Anders Søgaard","doi":"arxiv-2407.13419","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) are very performant connectionist systems, but\ndo they exhibit more compositionality? More importantly, is that part of why\nthey perform so well? We present empirical analyses across four LLM families\n(12 models) and three task categories, including a novel task introduced below.\nOur findings reveal a nuanced relationship in learning of compositional\nstrategies by LLMs -- while scaling enhances compositional abilities,\ninstruction tuning often has a reverse effect. Such disparity brings forth some\nopen issues regarding the development and improvement of large language models\nin alignment with human cognitive capacities.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Words to Worlds: Compositionality for Cognitive Architectures\",\"authors\":\"Ruchira Dhar, Anders Søgaard\",\"doi\":\"arxiv-2407.13419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) are very performant connectionist systems, but\\ndo they exhibit more compositionality? More importantly, is that part of why\\nthey perform so well? We present empirical analyses across four LLM families\\n(12 models) and three task categories, including a novel task introduced below.\\nOur findings reveal a nuanced relationship in learning of compositional\\nstrategies by LLMs -- while scaling enhances compositional abilities,\\ninstruction tuning often has a reverse effect. Such disparity brings forth some\\nopen issues regarding the development and improvement of large language models\\nin alignment with human cognitive capacities.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)是性能极佳的联结主义系统,但它们是否表现出更多的组合性?更重要的是,这是否是它们表现如此出色的部分原因?我们对四个 LLM 家族(12 个模型)和三个任务类别(包括下文介绍的一个新任务)进行了实证分析。我们的研究结果揭示了 LLM 学习组合策略的微妙关系--虽然缩放增强了组合能力,但指令调整往往会产生相反的效果。这种差异为开发和改进符合人类认知能力的大型语言模型提出了一些有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From Words to Worlds: Compositionality for Cognitive Architectures
Large language models (LLMs) are very performant connectionist systems, but do they exhibit more compositionality? More importantly, is that part of why they perform so well? We present empirical analyses across four LLM families (12 models) and three task categories, including a novel task introduced below. Our findings reveal a nuanced relationship in learning of compositional strategies by LLMs -- while scaling enhances compositional abilities, instruction tuning often has a reverse effect. Such disparity brings forth some open issues regarding the development and improvement of large language models in alignment with human cognitive capacities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1