历史、邻里和邻近性对城市土地增长的多维影响:动态时空滚动预测模型(STRM)

IF 2.1 3区 地球科学 Q2 GEOGRAPHY Transactions in GIS Pub Date : 2024-07-19 DOI:10.1111/tgis.13224
Yingjian Ren, Jianxin Yang, Yang Shen, Lizhou Wang, Zhong Zhang, Zibo Zhao
{"title":"历史、邻里和邻近性对城市土地增长的多维影响:动态时空滚动预测模型(STRM)","authors":"Yingjian Ren, Jianxin Yang, Yang Shen, Lizhou Wang, Zhong Zhang, Zibo Zhao","doi":"10.1111/tgis.13224","DOIUrl":null,"url":null,"abstract":"Accurate prediction of future urban land demand is essential for effective urban management and planning. However, existing studies often focus on predicting total demand within an administrative region, neglecting the spatiotemporal heterogeneities and interrelationships within its subregions, such as grids. This study introduces a dynamic spatiotemporal rolling prediction model (STRM) that integrates historical trends, neighborhood status, and spatial proximity for spatially explicit prediction of urban land demand at a grid level within an administrative region. STRM leverages historical urban land demand and proximity information from neighborhood grids to predict future demand of the foci grid. By integrating history and neighborhood information into a deep forest model, STRM provides an approach for rolling predictions of grid‐level urban land demand. Parameter sensitivity and structural sensitivity analyses of STRM reveal the impact of historical lags, neighborhood size, and spatial proximity on urban land demand predictions. Application of STRM in Wuhan demonstrated the performance of STRM over a 17‐year period (2000–2017), with an average adjusted <jats:italic>R</jats:italic><jats:sup>2</jats:sup> of 0.89, outperforming other urban land demand prediction models. By predicting demand on a year‐by‐year basis, STRM effectively captures spatiotemporal heterogeneity and enhances the resolution of urban land demand prediction. STRM represents a shift from static macroscopic to dynamic microscopic prediction of urban land demand, offering valuable insights for future urban development and planning decisions.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":"33 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional effects of history, neighborhood, and proximity on urban land growth: A dynamic spatiotemporal rolling prediction model (STRM)\",\"authors\":\"Yingjian Ren, Jianxin Yang, Yang Shen, Lizhou Wang, Zhong Zhang, Zibo Zhao\",\"doi\":\"10.1111/tgis.13224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of future urban land demand is essential for effective urban management and planning. However, existing studies often focus on predicting total demand within an administrative region, neglecting the spatiotemporal heterogeneities and interrelationships within its subregions, such as grids. This study introduces a dynamic spatiotemporal rolling prediction model (STRM) that integrates historical trends, neighborhood status, and spatial proximity for spatially explicit prediction of urban land demand at a grid level within an administrative region. STRM leverages historical urban land demand and proximity information from neighborhood grids to predict future demand of the foci grid. By integrating history and neighborhood information into a deep forest model, STRM provides an approach for rolling predictions of grid‐level urban land demand. Parameter sensitivity and structural sensitivity analyses of STRM reveal the impact of historical lags, neighborhood size, and spatial proximity on urban land demand predictions. Application of STRM in Wuhan demonstrated the performance of STRM over a 17‐year period (2000–2017), with an average adjusted <jats:italic>R</jats:italic><jats:sup>2</jats:sup> of 0.89, outperforming other urban land demand prediction models. By predicting demand on a year‐by‐year basis, STRM effectively captures spatiotemporal heterogeneity and enhances the resolution of urban land demand prediction. STRM represents a shift from static macroscopic to dynamic microscopic prediction of urban land demand, offering valuable insights for future urban development and planning decisions.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13224\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13224","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

准确预测未来城市土地需求对于有效的城市管理和规划至关重要。然而,现有的研究往往侧重于预测行政区域内的总需求,而忽略了网格等子区域内的时空异质性和相互关系。本研究介绍了一种动态时空滚动预测模型(STRM),该模型综合了历史趋势、邻里状况和空间邻近性,可在行政区域内的网格层面对城市用地需求进行空间明确预测。STRM 利用历史城市土地需求和邻里网格的邻近性信息来预测重点网格的未来需求。通过将历史和邻近信息整合到深林模型中,STRM 提供了一种滚动预测网格级城市土地需求的方法。STRM 的参数敏感性和结构敏感性分析揭示了历史滞后、邻里规模和空间邻近性对城市土地需求预测的影响。STRM 在武汉的应用表明,STRM 在 17 年内(2000-2017 年)的性能优异,平均调整 R2 为 0.89,优于其他城市土地需求预测模型。通过逐年预测需求,STRM 有效地捕捉了时空异质性,提高了城市土地需求预测的分辨率。STRM 代表了城市土地需求预测从静态宏观向动态微观的转变,为未来城市发展和规划决策提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multidimensional effects of history, neighborhood, and proximity on urban land growth: A dynamic spatiotemporal rolling prediction model (STRM)
Accurate prediction of future urban land demand is essential for effective urban management and planning. However, existing studies often focus on predicting total demand within an administrative region, neglecting the spatiotemporal heterogeneities and interrelationships within its subregions, such as grids. This study introduces a dynamic spatiotemporal rolling prediction model (STRM) that integrates historical trends, neighborhood status, and spatial proximity for spatially explicit prediction of urban land demand at a grid level within an administrative region. STRM leverages historical urban land demand and proximity information from neighborhood grids to predict future demand of the foci grid. By integrating history and neighborhood information into a deep forest model, STRM provides an approach for rolling predictions of grid‐level urban land demand. Parameter sensitivity and structural sensitivity analyses of STRM reveal the impact of historical lags, neighborhood size, and spatial proximity on urban land demand predictions. Application of STRM in Wuhan demonstrated the performance of STRM over a 17‐year period (2000–2017), with an average adjusted R2 of 0.89, outperforming other urban land demand prediction models. By predicting demand on a year‐by‐year basis, STRM effectively captures spatiotemporal heterogeneity and enhances the resolution of urban land demand prediction. STRM represents a shift from static macroscopic to dynamic microscopic prediction of urban land demand, offering valuable insights for future urban development and planning decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions in GIS
Transactions in GIS GEOGRAPHY-
CiteScore
4.60
自引率
8.30%
发文量
116
期刊介绍: Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business
期刊最新文献
Knowledge‐Guided Automated Cartographic Generalization Process Construction: A Case Study Based on Map Analysis of Public Maps of China City Influence Network: Mining and Analyzing the Influence of Chinese Cities Based on Social Media PyGRF: An Improved Python Geographical Random Forest Model and Case Studies in Public Health and Natural Disasters Neural Sensing: Toward a New Approach to Understanding Emotional Responses to Place Construction of Earth Observation Knowledge Hub Based on Knowledge Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1