{"title":"Ti3SiC2/Cu 复合材料在高温下的抗氧化行为","authors":"Rui Zhang, Huiming Zhang, Fuyan Liu, Shuai Ma","doi":"10.1111/ijac.14869","DOIUrl":null,"url":null,"abstract":"The Ti<jats:sub>3</jats:sub>SiC<jats:sub>2</jats:sub>/Cu composites were synthesized by spark plasma sintering (SPS) at 950°C, 1000°C, and 1050°C, and the as‐formed composites were oxidized at 700°C, 800°C, and 900°C. The effects of the sintering temperature and the oxidation temperature on the anti‐oxidation of the composites at high temperatures were explored. The samples were characterized by X‐ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X‐ray photoelectron spectroscope. The results indicated that the sintering temperature significantly improved the oxidation resistance of the composites. With the increase of the sintering temperature, the weight gain of the oxidation of the composites decreased and the optimum sintering temperature was 1050°C. At an identical sintering temperature, with the increase of the oxidation temperature, the weight gain of the oxidation of the composites first decreased and then it increased. Thus, when the oxidation temperature was 800°C, the composites exhibited an excellent oxidation resistance (oxidation weight gain: .0042 × 10<jats:sup>−5</jats:sup> g/mm<jats:sup>2</jats:sup>). The anti‐oxidation behavior of the composites benefited by the formation of an oxide layer. The oxide layer was composed by TiO<jats:sub>2</jats:sub>, CuO, and amorphous SiO<jats:sub>2</jats:sub>.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"30 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The anti‐oxidation behavior of the Ti3SiC2/Cu composites at high temperatures\",\"authors\":\"Rui Zhang, Huiming Zhang, Fuyan Liu, Shuai Ma\",\"doi\":\"10.1111/ijac.14869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ti<jats:sub>3</jats:sub>SiC<jats:sub>2</jats:sub>/Cu composites were synthesized by spark plasma sintering (SPS) at 950°C, 1000°C, and 1050°C, and the as‐formed composites were oxidized at 700°C, 800°C, and 900°C. The effects of the sintering temperature and the oxidation temperature on the anti‐oxidation of the composites at high temperatures were explored. The samples were characterized by X‐ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X‐ray photoelectron spectroscope. The results indicated that the sintering temperature significantly improved the oxidation resistance of the composites. With the increase of the sintering temperature, the weight gain of the oxidation of the composites decreased and the optimum sintering temperature was 1050°C. At an identical sintering temperature, with the increase of the oxidation temperature, the weight gain of the oxidation of the composites first decreased and then it increased. Thus, when the oxidation temperature was 800°C, the composites exhibited an excellent oxidation resistance (oxidation weight gain: .0042 × 10<jats:sup>−5</jats:sup> g/mm<jats:sup>2</jats:sup>). The anti‐oxidation behavior of the composites benefited by the formation of an oxide layer. The oxide layer was composed by TiO<jats:sub>2</jats:sub>, CuO, and amorphous SiO<jats:sub>2</jats:sub>.\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/ijac.14869\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijac.14869","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
The anti‐oxidation behavior of the Ti3SiC2/Cu composites at high temperatures
The Ti3SiC2/Cu composites were synthesized by spark plasma sintering (SPS) at 950°C, 1000°C, and 1050°C, and the as‐formed composites were oxidized at 700°C, 800°C, and 900°C. The effects of the sintering temperature and the oxidation temperature on the anti‐oxidation of the composites at high temperatures were explored. The samples were characterized by X‐ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X‐ray photoelectron spectroscope. The results indicated that the sintering temperature significantly improved the oxidation resistance of the composites. With the increase of the sintering temperature, the weight gain of the oxidation of the composites decreased and the optimum sintering temperature was 1050°C. At an identical sintering temperature, with the increase of the oxidation temperature, the weight gain of the oxidation of the composites first decreased and then it increased. Thus, when the oxidation temperature was 800°C, the composites exhibited an excellent oxidation resistance (oxidation weight gain: .0042 × 10−5 g/mm2). The anti‐oxidation behavior of the composites benefited by the formation of an oxide layer. The oxide layer was composed by TiO2, CuO, and amorphous SiO2.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;