K. Senthilkumar, M. Chandrasekar, Mohammad Jawaid, Hassan Fouad, Basim Abu-Jdayil
{"title":"用油棕榈纤维作为增强材料提高生物环氧复合材料的性能:机械、物理和热性能评估","authors":"K. Senthilkumar, M. Chandrasekar, Mohammad Jawaid, Hassan Fouad, Basim Abu-Jdayil","doi":"10.1007/s10924-024-03359-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, short oil palm fibre-reinforced bio-epoxy matrix composites were fabricated using the hand-lay-up technique. The effects of oil palm fibre composites on mechanical, physical, and thermal behaviours were examined. This work aimed to identify the optimal fibre loading that enables the oil palm/bio-epoxy composite to have superior thermal and mechanical properties. Fibre loading varied from 30 to 60 wt%. A maximum Young’s modulus of 5.76 GPa was obtained at 60 wt% while a maximum flexural modulus of 5.2 GPa and impact strength of 5.55 kJ/m<sup>2</sup> was obtained at 50 wt%. However, tensile and flexural strength were not much improved. Regarding the moisture absorption and thickness swelling, the composites followed a similar order: bio-epoxy matrix < 30 wt% < 40 wt% <50 wt% < 60 wt%. The fickian diffusion model was used to describe the thickness swelling behaviour. The major inference from the thermal characterization was that as the fibre loading was increased, there was a substantial improvement in thermal stability evident from the lower damping factor (0.21 at 60 wt.%), better dimensional stability and higher residue % (22.22% at 50 wt%) at elevated temperatures. Besides, scanning electron microscopy (SEM) was examined for tested samples to understand the fibre-to-matrix bonding phenomenon. Based on these results, the short oil palm fibre composites can be suggested for some potential applications such as automotive components (e.g., door trims, interior panels), aerospace (e.g., tray tables, overhead bins) and construction materials (e.g., cladding, roofing).</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 11","pages":"6055 - 6069"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Bio-epoxy Composites with Oil Palm Fibre as Reinforcement: Assessment of Mechanical, Physical and Thermal Properties\",\"authors\":\"K. Senthilkumar, M. Chandrasekar, Mohammad Jawaid, Hassan Fouad, Basim Abu-Jdayil\",\"doi\":\"10.1007/s10924-024-03359-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, short oil palm fibre-reinforced bio-epoxy matrix composites were fabricated using the hand-lay-up technique. The effects of oil palm fibre composites on mechanical, physical, and thermal behaviours were examined. This work aimed to identify the optimal fibre loading that enables the oil palm/bio-epoxy composite to have superior thermal and mechanical properties. Fibre loading varied from 30 to 60 wt%. A maximum Young’s modulus of 5.76 GPa was obtained at 60 wt% while a maximum flexural modulus of 5.2 GPa and impact strength of 5.55 kJ/m<sup>2</sup> was obtained at 50 wt%. However, tensile and flexural strength were not much improved. Regarding the moisture absorption and thickness swelling, the composites followed a similar order: bio-epoxy matrix < 30 wt% < 40 wt% <50 wt% < 60 wt%. The fickian diffusion model was used to describe the thickness swelling behaviour. The major inference from the thermal characterization was that as the fibre loading was increased, there was a substantial improvement in thermal stability evident from the lower damping factor (0.21 at 60 wt.%), better dimensional stability and higher residue % (22.22% at 50 wt%) at elevated temperatures. Besides, scanning electron microscopy (SEM) was examined for tested samples to understand the fibre-to-matrix bonding phenomenon. Based on these results, the short oil palm fibre composites can be suggested for some potential applications such as automotive components (e.g., door trims, interior panels), aerospace (e.g., tray tables, overhead bins) and construction materials (e.g., cladding, roofing).</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"32 11\",\"pages\":\"6055 - 6069\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-024-03359-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03359-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Enhancing the Bio-epoxy Composites with Oil Palm Fibre as Reinforcement: Assessment of Mechanical, Physical and Thermal Properties
In this work, short oil palm fibre-reinforced bio-epoxy matrix composites were fabricated using the hand-lay-up technique. The effects of oil palm fibre composites on mechanical, physical, and thermal behaviours were examined. This work aimed to identify the optimal fibre loading that enables the oil palm/bio-epoxy composite to have superior thermal and mechanical properties. Fibre loading varied from 30 to 60 wt%. A maximum Young’s modulus of 5.76 GPa was obtained at 60 wt% while a maximum flexural modulus of 5.2 GPa and impact strength of 5.55 kJ/m2 was obtained at 50 wt%. However, tensile and flexural strength were not much improved. Regarding the moisture absorption and thickness swelling, the composites followed a similar order: bio-epoxy matrix < 30 wt% < 40 wt% <50 wt% < 60 wt%. The fickian diffusion model was used to describe the thickness swelling behaviour. The major inference from the thermal characterization was that as the fibre loading was increased, there was a substantial improvement in thermal stability evident from the lower damping factor (0.21 at 60 wt.%), better dimensional stability and higher residue % (22.22% at 50 wt%) at elevated temperatures. Besides, scanning electron microscopy (SEM) was examined for tested samples to understand the fibre-to-matrix bonding phenomenon. Based on these results, the short oil palm fibre composites can be suggested for some potential applications such as automotive components (e.g., door trims, interior panels), aerospace (e.g., tray tables, overhead bins) and construction materials (e.g., cladding, roofing).
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.