{"title":"电子温度和浓度对常压低温氦等离子体射流中羟基自由基和一氧化氮产生的影响:蜂群分析和全局模型研究","authors":"Željko Mladenović, Saša Gocić","doi":"10.1515/phys-2024-0055","DOIUrl":null,"url":null,"abstract":"This work presents a numerical analysis by zero-dimensional global model of the influence of electron temperature and concentration on production of OH and NO for helium plasma jet propagating in the atmosphere of humid air. The calculations are done for the constant electron temperatures (1–4 eV) and concentrations (10<jats:sup>10</jats:sup> cm<jats:sup>−3</jats:sup> to 10<jats:sup>14</jats:sup> cm<jats:sup>−3</jats:sup>). The mole fractions of air and water vapor vary from 100 to 10,000 ppm. The presented analysis reveals that at low electron temperature and H<jats:sub>2</jats:sub>O contents, the dissociative electron attachment to O<jats:sub>2</jats:sub> dominates over attachment to H<jats:sub>2</jats:sub>O in production of OH. At higher amount, H<jats:sub>2</jats:sub>O modifies the high-energy tail of electron distribution function and increases rate coefficients for electron impact processes. Dissociative electron attachment to H<jats:sub>2</jats:sub>O dominates in the production of OH at 1 eV and remains important at higher energies when processes with O(<jats:sup>1</jats:sup>D), O(<jats:sup>1</jats:sup>S), O<jats:sub>2</jats:sub>(<jats:sup>1</jats:sup>∆) produce OH. Impact dissociation of H<jats:sub>2</jats:sub>O dominates over the dissociative attachment at 3 and 4 eV. NO comes mainly from air effluent in the plasma and O + NO<jats:sub>2</jats:sub> at 100 ppm of H<jats:sub>2</jats:sub>O. Above 2 eV, the conversion process between OH and NO dominates in NO production at higher amount of H<jats:sub>2</jats:sub>O. Regarding dependencies on electron concentration, at low electron temperatures, electron distribution function is affected only at 10<jats:sup>14</jats:sup> cm<jats:sup>−3</jats:sup>. But in the case of higher temperature, electron concentration and water vapor have negligible influence. The best agreement with measured data is obtained for electron concentration 10<jats:sup>10</jats:sup> cm<jats:sup>−3</jats:sup> and at temperature of 2 eV for OH and 10<jats:sup>12</jats:sup> cm<jats:sup>−3</jats:sup> and 3 eV for NO.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"32 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of electron temperature and concentration on production of hydroxyl radical and nitric oxide in atmospheric pressure low-temperature helium plasma jet: Swarm analysis and global model investigation\",\"authors\":\"Željko Mladenović, Saša Gocić\",\"doi\":\"10.1515/phys-2024-0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a numerical analysis by zero-dimensional global model of the influence of electron temperature and concentration on production of OH and NO for helium plasma jet propagating in the atmosphere of humid air. The calculations are done for the constant electron temperatures (1–4 eV) and concentrations (10<jats:sup>10</jats:sup> cm<jats:sup>−3</jats:sup> to 10<jats:sup>14</jats:sup> cm<jats:sup>−3</jats:sup>). The mole fractions of air and water vapor vary from 100 to 10,000 ppm. The presented analysis reveals that at low electron temperature and H<jats:sub>2</jats:sub>O contents, the dissociative electron attachment to O<jats:sub>2</jats:sub> dominates over attachment to H<jats:sub>2</jats:sub>O in production of OH. At higher amount, H<jats:sub>2</jats:sub>O modifies the high-energy tail of electron distribution function and increases rate coefficients for electron impact processes. Dissociative electron attachment to H<jats:sub>2</jats:sub>O dominates in the production of OH at 1 eV and remains important at higher energies when processes with O(<jats:sup>1</jats:sup>D), O(<jats:sup>1</jats:sup>S), O<jats:sub>2</jats:sub>(<jats:sup>1</jats:sup>∆) produce OH. Impact dissociation of H<jats:sub>2</jats:sub>O dominates over the dissociative attachment at 3 and 4 eV. NO comes mainly from air effluent in the plasma and O + NO<jats:sub>2</jats:sub> at 100 ppm of H<jats:sub>2</jats:sub>O. Above 2 eV, the conversion process between OH and NO dominates in NO production at higher amount of H<jats:sub>2</jats:sub>O. Regarding dependencies on electron concentration, at low electron temperatures, electron distribution function is affected only at 10<jats:sup>14</jats:sup> cm<jats:sup>−3</jats:sup>. But in the case of higher temperature, electron concentration and water vapor have negligible influence. The best agreement with measured data is obtained for electron concentration 10<jats:sup>10</jats:sup> cm<jats:sup>−3</jats:sup> and at temperature of 2 eV for OH and 10<jats:sup>12</jats:sup> cm<jats:sup>−3</jats:sup> and 3 eV for NO.\",\"PeriodicalId\":48710,\"journal\":{\"name\":\"Open Physics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2024-0055\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0055","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究通过零维全局模型,对在潮湿空气大气中传播的氦等离子体射流中电子温度和浓度对羟基和氮氧化物生成的影响进行了数值分析。计算是在电子温度(1-4 eV)和浓度(1010 cm-3 至 1014 cm-3)不变的情况下进行的。空气和水蒸气的摩尔分数从 100 到 10,000 ppm 不等。分析结果表明,在电子温度和 H2O 含量较低时,在产生 OH 的过程中,离解电子附着在 O2 上比附着在 H2O 上占优势。当电子温度和 H2O 含量较高时,H2O 会改变电子分布函数的高能量尾部,并增加电子撞击过程的速率系数。在 1 eV 时,电子与 H2O 的解离附着在产生 OH 的过程中占主导地位,在更高能量时,当与 O(1D)、O(1S)、O2(1∆) 的过程产生 OH 时,电子与 H2O 的解离附着仍然很重要。在 3 和 4 eV 时,H2O 的撞击解离比解离附着占优势。NO 主要来自等离子体中的空气流出物,在 H2O 为 100 ppm 时产生 O + NO2。在 2 eV 以上,当 H2O 含量较高时,OH 和 NO 之间的转化过程在 NO 生成中占主导地位。关于电子浓度的相关性,在低电子温度下,电子分布函数仅在 1014 cm-3 时受到影响。但在温度较高的情况下,电子浓度和水蒸气的影响可以忽略不计。在电子浓度为 1010 cm-3 和温度为 2 eV 时,OH 的电子分布函数与测量数据的一致性最好;在电子浓度为 1012 cm-3 和温度为 3 eV 时,NO 的电子分布函数与测量数据的一致性最好。
Effect of electron temperature and concentration on production of hydroxyl radical and nitric oxide in atmospheric pressure low-temperature helium plasma jet: Swarm analysis and global model investigation
This work presents a numerical analysis by zero-dimensional global model of the influence of electron temperature and concentration on production of OH and NO for helium plasma jet propagating in the atmosphere of humid air. The calculations are done for the constant electron temperatures (1–4 eV) and concentrations (1010 cm−3 to 1014 cm−3). The mole fractions of air and water vapor vary from 100 to 10,000 ppm. The presented analysis reveals that at low electron temperature and H2O contents, the dissociative electron attachment to O2 dominates over attachment to H2O in production of OH. At higher amount, H2O modifies the high-energy tail of electron distribution function and increases rate coefficients for electron impact processes. Dissociative electron attachment to H2O dominates in the production of OH at 1 eV and remains important at higher energies when processes with O(1D), O(1S), O2(1∆) produce OH. Impact dissociation of H2O dominates over the dissociative attachment at 3 and 4 eV. NO comes mainly from air effluent in the plasma and O + NO2 at 100 ppm of H2O. Above 2 eV, the conversion process between OH and NO dominates in NO production at higher amount of H2O. Regarding dependencies on electron concentration, at low electron temperatures, electron distribution function is affected only at 1014 cm−3. But in the case of higher temperature, electron concentration and water vapor have negligible influence. The best agreement with measured data is obtained for electron concentration 1010 cm−3 and at temperature of 2 eV for OH and 1012 cm−3 and 3 eV for NO.
期刊介绍:
Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.