伪装物体检测的新基准:RGB-D 伪装物体检测数据集

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Open Physics Pub Date : 2024-07-20 DOI:10.1515/phys-2024-0060
Dongdong Zhang, Chunping Wang, Qiang Fu
{"title":"伪装物体检测的新基准:RGB-D 伪装物体检测数据集","authors":"Dongdong Zhang, Chunping Wang, Qiang Fu","doi":"10.1515/phys-2024-0060","DOIUrl":null,"url":null,"abstract":"This article aims to provide a novel image paradigm for camouflaged object detection, <jats:italic>i.e.</jats:italic>, RGB-D images. To promote the development of camouflaged object detection tasks based on RGB-D images, we construct an RGB-D camouflaged object detection dataset, dubbed CODD. This dataset is obtained by converting the existing salient object detection RGB-D datasets by image-to-image translation techniques, which is comparable to the current widely used camouflaged object detection dataset in terms of diversity and complexity. In particular, in order to obtain high-quality translated images, we design a selection strategy that takes into account the structural similarity between pre- and post-conversion images, the similarity between the appearance of objects and their surroundings, as well as the ambiguity of object boundaries. In addition, we extensively evaluate the CODD dataset using existing RGB-D-based salient object detection methods to validate the challenge and usability of the dataset. The CODD dataset will be available at: <jats:ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" ext-link-type=\"uri\" xlink:href=\"https://github.com/zcc0616/CODD-Dateset.git\">https://github.com/zcc0616/CODD-Dateset.git</jats:ext-link>.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new benchmark for camouflaged object detection: RGB-D camouflaged object detection dataset\",\"authors\":\"Dongdong Zhang, Chunping Wang, Qiang Fu\",\"doi\":\"10.1515/phys-2024-0060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to provide a novel image paradigm for camouflaged object detection, <jats:italic>i.e.</jats:italic>, RGB-D images. To promote the development of camouflaged object detection tasks based on RGB-D images, we construct an RGB-D camouflaged object detection dataset, dubbed CODD. This dataset is obtained by converting the existing salient object detection RGB-D datasets by image-to-image translation techniques, which is comparable to the current widely used camouflaged object detection dataset in terms of diversity and complexity. In particular, in order to obtain high-quality translated images, we design a selection strategy that takes into account the structural similarity between pre- and post-conversion images, the similarity between the appearance of objects and their surroundings, as well as the ambiguity of object boundaries. In addition, we extensively evaluate the CODD dataset using existing RGB-D-based salient object detection methods to validate the challenge and usability of the dataset. The CODD dataset will be available at: <jats:ext-link xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" ext-link-type=\\\"uri\\\" xlink:href=\\\"https://github.com/zcc0616/CODD-Dateset.git\\\">https://github.com/zcc0616/CODD-Dateset.git</jats:ext-link>.\",\"PeriodicalId\":48710,\"journal\":{\"name\":\"Open Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2024-0060\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0060","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在为伪装物体检测提供一种新的图像范例,即 RGB-D 图像。为了促进基于 RGB-D 图像的伪装物体检测任务的发展,我们构建了一个 RGB-D 伪装物体检测数据集,命名为 CODD。该数据集是通过图像到图像转换技术将现有的突出物体检测 RGB-D 数据集转换而来,在多样性和复杂性方面与目前广泛使用的伪装物体检测数据集相当。特别是,为了获得高质量的翻译图像,我们设计了一种选择策略,该策略考虑了转换前和转换后图像的结构相似性、物体外观与其周围环境的相似性以及物体边界的模糊性。此外,我们还利用现有的基于 RGB-D 的突出物体检测方法对 CODD 数据集进行了广泛评估,以验证该数据集的挑战性和可用性。CODD 数据集可在以下网址获取:https://github.com/zcc0616/CODD-Dateset.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new benchmark for camouflaged object detection: RGB-D camouflaged object detection dataset
This article aims to provide a novel image paradigm for camouflaged object detection, i.e., RGB-D images. To promote the development of camouflaged object detection tasks based on RGB-D images, we construct an RGB-D camouflaged object detection dataset, dubbed CODD. This dataset is obtained by converting the existing salient object detection RGB-D datasets by image-to-image translation techniques, which is comparable to the current widely used camouflaged object detection dataset in terms of diversity and complexity. In particular, in order to obtain high-quality translated images, we design a selection strategy that takes into account the structural similarity between pre- and post-conversion images, the similarity between the appearance of objects and their surroundings, as well as the ambiguity of object boundaries. In addition, we extensively evaluate the CODD dataset using existing RGB-D-based salient object detection methods to validate the challenge and usability of the dataset. The CODD dataset will be available at: https://github.com/zcc0616/CODD-Dateset.git.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Physics
Open Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.20
自引率
5.30%
发文量
82
审稿时长
18 weeks
期刊介绍: Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
期刊最新文献
Effectiveness of microwave ablation using two simultaneous antennas for liver malignancy treatment Analysis of a generalized proportional fractional stochastic differential equation incorporating Carathéodory's approximation and applications Improving heat transfer efficiency via optimization and sensitivity assessment in hybrid nanofluid flow with variable magnetism using the Yamada–Ota model Thermosolutal Marangoni convective flow of MHD tangent hyperbolic hybrid nanofluids with elastic deformation and heat source Study on dynamic and static tensile and puncture-resistant mechanical properties of impregnated STF multi-dimensional structure Kevlar fiber reinforced composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1