Jingchun Xiang;C. Q. Jiang;Tianlu Ma;Yibo Wang;Yuanshuang Fan
{"title":"用于无线电力传输系统的纳米晶薄片带状超薄自谐振耦合器","authors":"Jingchun Xiang;C. Q. Jiang;Tianlu Ma;Yibo Wang;Yuanshuang Fan","doi":"10.1109/TMAG.2024.3429488","DOIUrl":null,"url":null,"abstract":"This article introduces an ultra-thin self-resonant coupler using nanocrystalline flake ribbon (NFR) material for wireless power transfer (WPT). The self-resonant coupler has garnered certain attention in the industry due to its ability to eliminate the compensating capacitor, resulting in a notable increase in power density. However, most research endeavors have primarily focused on WPT systems operating at megahertz frequencies with low power levels. Nanocrystalline materials exhibit high magnetic saturation and lower core loss in comparison to conventional MnZn materials. In addition, NFR materials offer ultra-thin profiles and flexibility, enabling the creation of compact WPT systems. In this study, the self-resonant coupler is fabricated with a double-D (DD) structured, flexible printed circuit (FPC) pad and integrated NFR core. This configuration achieves a power output of 400 W at 32 kHz, rendering it suitable for flexible surface WPT charging systems within a thickness of 0.54 mm.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"60 9","pages":"1-5"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Ultra-Thin Self-Resonant Coupler With Nanocrystalline Flake Ribbons for Wireless Power Transfer System\",\"authors\":\"Jingchun Xiang;C. Q. Jiang;Tianlu Ma;Yibo Wang;Yuanshuang Fan\",\"doi\":\"10.1109/TMAG.2024.3429488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces an ultra-thin self-resonant coupler using nanocrystalline flake ribbon (NFR) material for wireless power transfer (WPT). The self-resonant coupler has garnered certain attention in the industry due to its ability to eliminate the compensating capacitor, resulting in a notable increase in power density. However, most research endeavors have primarily focused on WPT systems operating at megahertz frequencies with low power levels. Nanocrystalline materials exhibit high magnetic saturation and lower core loss in comparison to conventional MnZn materials. In addition, NFR materials offer ultra-thin profiles and flexibility, enabling the creation of compact WPT systems. In this study, the self-resonant coupler is fabricated with a double-D (DD) structured, flexible printed circuit (FPC) pad and integrated NFR core. This configuration achieves a power output of 400 W at 32 kHz, rendering it suitable for flexible surface WPT charging systems within a thickness of 0.54 mm.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"60 9\",\"pages\":\"1-5\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10601222/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10601222/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种使用纳米晶薄片带(NFR)材料的超薄自谐振耦合器,用于无线功率传输(WPT)。自谐振耦合器能够消除补偿电容器,从而显著提高功率密度,因此受到业界的广泛关注。然而,大多数研究工作主要集中在工作频率为兆赫兹、功率水平较低的 WPT 系统上。与传统的锰锌材料相比,纳米晶材料具有较高的磁饱和度和较低的磁芯损耗。此外,NFR 材料还具有超薄外形和灵活性,可用于制造紧凑型 WPT 系统。在这项研究中,自谐振耦合器采用了双 D(DD)结构、柔性印刷电路(FPC)焊盘和集成 NFR 磁芯。这种配置在 32 kHz 频率下可实现 400 W 的功率输出,适用于厚度仅为 0.54 mm 的柔性表面 WPT 充电系统。
An Ultra-Thin Self-Resonant Coupler With Nanocrystalline Flake Ribbons for Wireless Power Transfer System
This article introduces an ultra-thin self-resonant coupler using nanocrystalline flake ribbon (NFR) material for wireless power transfer (WPT). The self-resonant coupler has garnered certain attention in the industry due to its ability to eliminate the compensating capacitor, resulting in a notable increase in power density. However, most research endeavors have primarily focused on WPT systems operating at megahertz frequencies with low power levels. Nanocrystalline materials exhibit high magnetic saturation and lower core loss in comparison to conventional MnZn materials. In addition, NFR materials offer ultra-thin profiles and flexibility, enabling the creation of compact WPT systems. In this study, the self-resonant coupler is fabricated with a double-D (DD) structured, flexible printed circuit (FPC) pad and integrated NFR core. This configuration achieves a power output of 400 W at 32 kHz, rendering it suitable for flexible surface WPT charging systems within a thickness of 0.54 mm.
期刊介绍:
Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.