Wei Zhang, Kaitao Yuan, Yaqin Zhang, Xiao Zhou, Tao Li, Jie Pan
{"title":"油页岩地球化学特性及其成矿潜力研究","authors":"Wei Zhang, Kaitao Yuan, Yaqin Zhang, Xiao Zhou, Tao Li, Jie Pan","doi":"10.1007/s10553-024-01717-7","DOIUrl":null,"url":null,"abstract":"<p>With the gradual depletion of conventional petroleum resources, oil shale, as an important unconventional oil and gas resource, is of great significance to alleviate the global energy crisis and optimize the energy structure. In this study, we comprehensively assessed the organic matter abundance, type, maturity, and trace element characteristics of oil shale by collecting and analyzing oil shale samples from the Lower Permian region in the western part of the southern margin of the Junggar Basin, and by applying pyrolysis analysis and rock pyrolysis analysis. The study showed that the average value of total organic carbon (TOC) of the oil shale in the study area was 10.26%, of which 41.67% was medium-grade oil shale and 58.33% was low-grade oil shale, reflecting the overall abundance of medium-low organic matter. The average value of hydrocarbon potential was 40.83 mg/g. The hydrogen index of the oil shale samples ranged from 77 to 861.06 mg/g, with an average value of 405.56 mg/g. The organic matter type was mainly of the II<sub>1</sub> type (humic-sapropelic type), which accounted for 75% of the total, and the analysis of the highest pyrolysis peak temperature showed that 83.33% of the samples were in the low maturity-mature stage. Trace element analyses revealed that the oil shales in the study area were formed in a terrestrialweakly reduced depositional environment. Especially, the analysis of Sr/Ba, Th/U and B/Ga ratios indicated that the oil shale was mainly formed in freshwater-semi-saline environment. In addition, the analysis of V/(V+Ni) and U/Th ratios supports the reduced environment in which the oil shale was formed. The shale in the Dalongkou area has greater salinity values and higher organic matter productivity in the water body at the time of formation compared to the oil shale in the Cangfanggou area. The results of this study are important for understanding the geochemical properties and mineralization potential of the Lower Permian oil shales in the western part of the southern margin of the Junggar Basin.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":"21 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Geochemical Properties of Oil Shale and Its Mineralization Potential\",\"authors\":\"Wei Zhang, Kaitao Yuan, Yaqin Zhang, Xiao Zhou, Tao Li, Jie Pan\",\"doi\":\"10.1007/s10553-024-01717-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the gradual depletion of conventional petroleum resources, oil shale, as an important unconventional oil and gas resource, is of great significance to alleviate the global energy crisis and optimize the energy structure. In this study, we comprehensively assessed the organic matter abundance, type, maturity, and trace element characteristics of oil shale by collecting and analyzing oil shale samples from the Lower Permian region in the western part of the southern margin of the Junggar Basin, and by applying pyrolysis analysis and rock pyrolysis analysis. The study showed that the average value of total organic carbon (TOC) of the oil shale in the study area was 10.26%, of which 41.67% was medium-grade oil shale and 58.33% was low-grade oil shale, reflecting the overall abundance of medium-low organic matter. The average value of hydrocarbon potential was 40.83 mg/g. The hydrogen index of the oil shale samples ranged from 77 to 861.06 mg/g, with an average value of 405.56 mg/g. The organic matter type was mainly of the II<sub>1</sub> type (humic-sapropelic type), which accounted for 75% of the total, and the analysis of the highest pyrolysis peak temperature showed that 83.33% of the samples were in the low maturity-mature stage. Trace element analyses revealed that the oil shales in the study area were formed in a terrestrialweakly reduced depositional environment. Especially, the analysis of Sr/Ba, Th/U and B/Ga ratios indicated that the oil shale was mainly formed in freshwater-semi-saline environment. In addition, the analysis of V/(V+Ni) and U/Th ratios supports the reduced environment in which the oil shale was formed. The shale in the Dalongkou area has greater salinity values and higher organic matter productivity in the water body at the time of formation compared to the oil shale in the Cangfanggou area. The results of this study are important for understanding the geochemical properties and mineralization potential of the Lower Permian oil shales in the western part of the southern margin of the Junggar Basin.</p>\",\"PeriodicalId\":9908,\"journal\":{\"name\":\"Chemistry and Technology of Fuels and Oils\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Technology of Fuels and Oils\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10553-024-01717-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Technology of Fuels and Oils","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10553-024-01717-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Study on the Geochemical Properties of Oil Shale and Its Mineralization Potential
With the gradual depletion of conventional petroleum resources, oil shale, as an important unconventional oil and gas resource, is of great significance to alleviate the global energy crisis and optimize the energy structure. In this study, we comprehensively assessed the organic matter abundance, type, maturity, and trace element characteristics of oil shale by collecting and analyzing oil shale samples from the Lower Permian region in the western part of the southern margin of the Junggar Basin, and by applying pyrolysis analysis and rock pyrolysis analysis. The study showed that the average value of total organic carbon (TOC) of the oil shale in the study area was 10.26%, of which 41.67% was medium-grade oil shale and 58.33% was low-grade oil shale, reflecting the overall abundance of medium-low organic matter. The average value of hydrocarbon potential was 40.83 mg/g. The hydrogen index of the oil shale samples ranged from 77 to 861.06 mg/g, with an average value of 405.56 mg/g. The organic matter type was mainly of the II1 type (humic-sapropelic type), which accounted for 75% of the total, and the analysis of the highest pyrolysis peak temperature showed that 83.33% of the samples were in the low maturity-mature stage. Trace element analyses revealed that the oil shales in the study area were formed in a terrestrialweakly reduced depositional environment. Especially, the analysis of Sr/Ba, Th/U and B/Ga ratios indicated that the oil shale was mainly formed in freshwater-semi-saline environment. In addition, the analysis of V/(V+Ni) and U/Th ratios supports the reduced environment in which the oil shale was formed. The shale in the Dalongkou area has greater salinity values and higher organic matter productivity in the water body at the time of formation compared to the oil shale in the Cangfanggou area. The results of this study are important for understanding the geochemical properties and mineralization potential of the Lower Permian oil shales in the western part of the southern margin of the Junggar Basin.
期刊介绍:
Chemistry and Technology of Fuels and Oils publishes reports on improvements in the processing of petroleum and natural gas and cracking and refining techniques for the production of high-quality fuels, oils, greases, specialty fluids, additives and synthetics. The journal includes timely articles on the demulsification, desalting, and desulfurizing of crude oil; new flow plans for refineries; platforming, isomerization, catalytic reforming, and alkylation processes for obtaining aromatic hydrocarbons and high-octane gasoline; methods of producing ethylene, acetylene, benzene, acids, alcohols, esters, and other compounds from petroleum, as well as hydrogen from natural gas and liquid products.