{"title":"在太阳能干燥器中用托盘和扦子干燥苦瓜片的干燥行为和营养质量","authors":"Sudarshan M. Borse, Manpreet Singh, Preetinder Kaur, Sukhmeet Singh, Ruchika Zalpouri","doi":"10.1002/ep.14445","DOIUrl":null,"url":null,"abstract":"<p>In this investigation, we assessed the efficacy of an indirect-type solar drying system that utilized skewers and rack arrangements, comparing it to a conventional drying cabinet equipped with trays for dehydrating bitter gourd slices. We examined the influence of pretreatment methods and loading quantities on the solar drying process for bitter gourd slices in both configurations. The drying behavior of various combinations was scrutinized, and the physicochemical attributes of the dried bitter gourd samples, including total phenolic content, total flavonoid content, total chlorophyll content, antioxidant capacity, ascorbic acid content, and color, were analyzed. Rehydration characteristics, such as rehydration ratio, coefficient of rehydration, percent water in the rehydrated sample, and hardness of the rehydrated sample, were also determined. The bitter gourd slices achieved a final moisture content of 6.84%–8.27% wb after drying from an initial range of 88%–90% wb, within a total elapsed time of 28–55 h. The solar drying cabinet utilizing skewers exhibited enhanced efficiency, featuring reduced drying time and superior product quality compared to the tray-equipped drying cabinet. This improved performance is ascribed to enhanced hot air circulation over the produce surface, facilitated by the uniform spacing between skewers on racks within the drying chamber.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drying behavior and nutritional quality of bitter-gourd slices dried in a solar dryer with tray and skewer arrangement\",\"authors\":\"Sudarshan M. Borse, Manpreet Singh, Preetinder Kaur, Sukhmeet Singh, Ruchika Zalpouri\",\"doi\":\"10.1002/ep.14445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this investigation, we assessed the efficacy of an indirect-type solar drying system that utilized skewers and rack arrangements, comparing it to a conventional drying cabinet equipped with trays for dehydrating bitter gourd slices. We examined the influence of pretreatment methods and loading quantities on the solar drying process for bitter gourd slices in both configurations. The drying behavior of various combinations was scrutinized, and the physicochemical attributes of the dried bitter gourd samples, including total phenolic content, total flavonoid content, total chlorophyll content, antioxidant capacity, ascorbic acid content, and color, were analyzed. Rehydration characteristics, such as rehydration ratio, coefficient of rehydration, percent water in the rehydrated sample, and hardness of the rehydrated sample, were also determined. The bitter gourd slices achieved a final moisture content of 6.84%–8.27% wb after drying from an initial range of 88%–90% wb, within a total elapsed time of 28–55 h. The solar drying cabinet utilizing skewers exhibited enhanced efficiency, featuring reduced drying time and superior product quality compared to the tray-equipped drying cabinet. This improved performance is ascribed to enhanced hot air circulation over the produce surface, facilitated by the uniform spacing between skewers on racks within the drying chamber.</p>\",\"PeriodicalId\":11701,\"journal\":{\"name\":\"Environmental Progress & Sustainable Energy\",\"volume\":\"43 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Progress & Sustainable Energy\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ep.14445\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14445","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Drying behavior and nutritional quality of bitter-gourd slices dried in a solar dryer with tray and skewer arrangement
In this investigation, we assessed the efficacy of an indirect-type solar drying system that utilized skewers and rack arrangements, comparing it to a conventional drying cabinet equipped with trays for dehydrating bitter gourd slices. We examined the influence of pretreatment methods and loading quantities on the solar drying process for bitter gourd slices in both configurations. The drying behavior of various combinations was scrutinized, and the physicochemical attributes of the dried bitter gourd samples, including total phenolic content, total flavonoid content, total chlorophyll content, antioxidant capacity, ascorbic acid content, and color, were analyzed. Rehydration characteristics, such as rehydration ratio, coefficient of rehydration, percent water in the rehydrated sample, and hardness of the rehydrated sample, were also determined. The bitter gourd slices achieved a final moisture content of 6.84%–8.27% wb after drying from an initial range of 88%–90% wb, within a total elapsed time of 28–55 h. The solar drying cabinet utilizing skewers exhibited enhanced efficiency, featuring reduced drying time and superior product quality compared to the tray-equipped drying cabinet. This improved performance is ascribed to enhanced hot air circulation over the produce surface, facilitated by the uniform spacing between skewers on racks within the drying chamber.
期刊介绍:
Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.