用于硅基氮化镓高电子迁移率晶体管的金属有机化学气相沉积生长低温氮化铝栅极电介质

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Physica Status Solidi A-applications and Materials Science Pub Date : 2024-07-22 DOI:10.1002/pssa.202400050
Anirudh Venugopalarao, Shantveer Kanta, Hareesh Chandrasekar, Aniruddhan Gowrisankar, Muralidharan R. Rengarajan, Digbijoy N. Nath, Srinivasan Raghavan
{"title":"用于硅基氮化镓高电子迁移率晶体管的金属有机化学气相沉积生长低温氮化铝栅极电介质","authors":"Anirudh Venugopalarao, Shantveer Kanta, Hareesh Chandrasekar, Aniruddhan Gowrisankar, Muralidharan R. Rengarajan, Digbijoy N. Nath, Srinivasan Raghavan","doi":"10.1002/pssa.202400050","DOIUrl":null,"url":null,"abstract":"Gate dielectrics for gallium nitride (GaN) high electron mobility transistor (HEMT) technology have always been challenging because of the nonideal semiconductor–dielectric interface, which leads to electronic traps. Plasma‐enhanced chemical vapor deposition and atomic layer deposition are standard techniques, but they require surface treatment and post‐annealing to control these traps. This article explores metal organic chemical vapor deposition‐grown in situ aluminum nitride (AlN) as a gate dielectric. The interface is expected to be pristine as there is no change in the chamber environment. A thin (10 nm) AlN layer is deposited at a low temperature to minimize strain and prevent the formation of an unwanted conductive channel within the device. The electrical and structural properties of this AlN‐capped HEMT are compared to a standard GaN‐capped HEMT, including temperature‐dependent studies. The results show that the AlN‐capped HEMT retains a higher charge in the channel while having an order of magnitude lower gate leakage than the GaN‐capped sample. Furthermore, the AlN‐capped HEMT performs similarly to the GaN‐capped HEMT in terms of temperature‐dependent leakage, dynamic on‐resistance, and temperature coefficient of resistance.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"12 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal‐Organic Chemical Vapor Deposition Grown Low‐Temperature Aluminum Nitride Gate Dielectric for Gallium Nitride on Si High Electron Mobility Transistor\",\"authors\":\"Anirudh Venugopalarao, Shantveer Kanta, Hareesh Chandrasekar, Aniruddhan Gowrisankar, Muralidharan R. Rengarajan, Digbijoy N. Nath, Srinivasan Raghavan\",\"doi\":\"10.1002/pssa.202400050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gate dielectrics for gallium nitride (GaN) high electron mobility transistor (HEMT) technology have always been challenging because of the nonideal semiconductor–dielectric interface, which leads to electronic traps. Plasma‐enhanced chemical vapor deposition and atomic layer deposition are standard techniques, but they require surface treatment and post‐annealing to control these traps. This article explores metal organic chemical vapor deposition‐grown in situ aluminum nitride (AlN) as a gate dielectric. The interface is expected to be pristine as there is no change in the chamber environment. A thin (10 nm) AlN layer is deposited at a low temperature to minimize strain and prevent the formation of an unwanted conductive channel within the device. The electrical and structural properties of this AlN‐capped HEMT are compared to a standard GaN‐capped HEMT, including temperature‐dependent studies. The results show that the AlN‐capped HEMT retains a higher charge in the channel while having an order of magnitude lower gate leakage than the GaN‐capped sample. Furthermore, the AlN‐capped HEMT performs similarly to the GaN‐capped HEMT in terms of temperature‐dependent leakage, dynamic on‐resistance, and temperature coefficient of resistance.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400050\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400050","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氮化镓(GaN)高电子迁移率晶体管(HEMT)技术的栅极电介质一直是一项挑战,因为半导体-电介质界面的非理想性会导致电子陷阱。等离子体增强化学气相沉积和原子层沉积是标准技术,但它们需要表面处理和后退火来控制这些陷阱。本文探讨了将金属有机化学气相沉积原位生长的氮化铝(AlN)作为栅极电介质。由于腔室环境没有变化,因此预计界面是原始的。氮化铝薄层(10 nm)在低温下沉积,以尽量减少应变,防止在器件内形成不必要的导电通道。我们将这种氮化铝封层 HEMT 的电气和结构特性与标准氮化镓封层 HEMT 进行了比较,包括随温度变化的研究。结果表明,AlN 封装的 HEMT 在沟道中保留了更高的电荷,同时栅极漏电流比 GaN 封装的样品低一个数量级。此外,在随温度变化的漏电、动态导通电阻和电阻温度系数方面,AlN 封装 HEMT 的性能与 GaN 封装 HEMT 相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metal‐Organic Chemical Vapor Deposition Grown Low‐Temperature Aluminum Nitride Gate Dielectric for Gallium Nitride on Si High Electron Mobility Transistor
Gate dielectrics for gallium nitride (GaN) high electron mobility transistor (HEMT) technology have always been challenging because of the nonideal semiconductor–dielectric interface, which leads to electronic traps. Plasma‐enhanced chemical vapor deposition and atomic layer deposition are standard techniques, but they require surface treatment and post‐annealing to control these traps. This article explores metal organic chemical vapor deposition‐grown in situ aluminum nitride (AlN) as a gate dielectric. The interface is expected to be pristine as there is no change in the chamber environment. A thin (10 nm) AlN layer is deposited at a low temperature to minimize strain and prevent the formation of an unwanted conductive channel within the device. The electrical and structural properties of this AlN‐capped HEMT are compared to a standard GaN‐capped HEMT, including temperature‐dependent studies. The results show that the AlN‐capped HEMT retains a higher charge in the channel while having an order of magnitude lower gate leakage than the GaN‐capped sample. Furthermore, the AlN‐capped HEMT performs similarly to the GaN‐capped HEMT in terms of temperature‐dependent leakage, dynamic on‐resistance, and temperature coefficient of resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
期刊最新文献
Plasma‐Assisted Preparation and Properties of Chitosan‐Based Magnetic Hydrogels Performance Enhancement of SnS Solar Cell with Tungsten Disulfide Electron Transport Layer and Molybdenum Trioxide Hole Transport Layer Advancements in Piezoelectric‐Enabled Devices for Optical Communication Structural Distortions and Short‐Range Magnetism in a Honeycomb Iridate Cu3ZnIr2O6 Enhancing Reliability and Regeneration of Single Passivated Emitter Rear Contact Solar Cell Modules through Alternating Current Power Application to Mitigate Light and Elevated Temperature‐Induced Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1