{"title":"受硫酸盐还原菌脱硫弧菌影响的微生物对铜的加速腐蚀","authors":"Lijuan Chen, Jialin Li, Bo Wei, Jin Xu, Cheng Sun","doi":"10.1002/maco.202414451","DOIUrl":null,"url":null,"abstract":"<p>The corrosion behavior and electrochemical damage mechanisms induced by sulfate-reducing bacteria (SRB) on copper (Cu) were investigated in this study. Electrochemical impedance spectroscopy revealed that SRB accelerated the corrosion of Cu, albeit with a mitigating effect observed due to the formation of a protective and dense biofilm. However, upon the rupture of this protective film, the corrosion tendency of Cu significantly increased. Surface analysis corroborated these findings, with the predominant corrosion product identified as Cu2S, a result further supported by thermodynamic calculations. The accelerated corrosion of Cu was primarily attributed to the physiological metabolism of SRB, which generates hydrogen sulfide as the principal agent driving corrosion processes.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated microbiologically influenced corrosion of copper by sulfate-reducing bacterium Desulfovibrio desulfovibrio\",\"authors\":\"Lijuan Chen, Jialin Li, Bo Wei, Jin Xu, Cheng Sun\",\"doi\":\"10.1002/maco.202414451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The corrosion behavior and electrochemical damage mechanisms induced by sulfate-reducing bacteria (SRB) on copper (Cu) were investigated in this study. Electrochemical impedance spectroscopy revealed that SRB accelerated the corrosion of Cu, albeit with a mitigating effect observed due to the formation of a protective and dense biofilm. However, upon the rupture of this protective film, the corrosion tendency of Cu significantly increased. Surface analysis corroborated these findings, with the predominant corrosion product identified as Cu2S, a result further supported by thermodynamic calculations. The accelerated corrosion of Cu was primarily attributed to the physiological metabolism of SRB, which generates hydrogen sulfide as the principal agent driving corrosion processes.</p>\",\"PeriodicalId\":18225,\"journal\":{\"name\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/maco.202414451\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion-werkstoffe Und Korrosion","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/maco.202414451","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Accelerated microbiologically influenced corrosion of copper by sulfate-reducing bacterium Desulfovibrio desulfovibrio
The corrosion behavior and electrochemical damage mechanisms induced by sulfate-reducing bacteria (SRB) on copper (Cu) were investigated in this study. Electrochemical impedance spectroscopy revealed that SRB accelerated the corrosion of Cu, albeit with a mitigating effect observed due to the formation of a protective and dense biofilm. However, upon the rupture of this protective film, the corrosion tendency of Cu significantly increased. Surface analysis corroborated these findings, with the predominant corrosion product identified as Cu2S, a result further supported by thermodynamic calculations. The accelerated corrosion of Cu was primarily attributed to the physiological metabolism of SRB, which generates hydrogen sulfide as the principal agent driving corrosion processes.
期刊介绍:
Materials and Corrosion is the leading European journal in its field, providing rapid and comprehensive coverage of the subject and specifically highlighting the increasing importance of corrosion research and prevention.
Several sections exclusive to Materials and Corrosion bring you closer to the current events in the field of corrosion research and add to the impact this journal can make on your work.