Isehaq Al‐Nafai, Katarzyna Rzeszutek, Stuart Lyon, Christopher Jones, Douglas Beaumont
{"title":"铝添加剂如何改善富锌有机涂料的性能","authors":"Isehaq Al‐Nafai, Katarzyna Rzeszutek, Stuart Lyon, Christopher Jones, Douglas Beaumont","doi":"10.1002/maco.202414529","DOIUrl":null,"url":null,"abstract":"Novel sacrificial zinc‐rich organic coatings, with varying additions of aluminium, were prepared and tested for anticorrosion performance. Electrochemical measurements (potential vs. time and electrochemical impedance spectroscopy) were carried out to investigate cathodic protection and barrier performance while neutral salt spray and immersion experiments tested long‐term performance. Analytical scanning electron microscopy and X‐ray diffraction were used to characterize coatings before and after testing. Formulations containing aluminium significantly outperformed the standard 100% zinc‐rich coating with the greatest improvement occurring at 10%–15% aluminium by volume in the dry film. This improvement was caused by the dispersal of aluminium between zinc particles, which improved packing and enabled greater efficiency in zinc consumption resulting in extended galvanic protection times for steel substrates. The expected zinc corrosion product (basic zinc chloride, simonkolleite) was present within the coating as well as a Zn–Al layered doubled hydroxide. The latter's presence demonstrates that dissolution of aluminium contributed to the longevity of the galvanic action. The new Zn–Al formulations are extremely promising alternatives to standard zinc‐rich epoxy coatings, significantly reducing zinc loading and increasing the sacrificial lifetime.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How aluminium additions improve the performance of zinc‐rich organic coatings\",\"authors\":\"Isehaq Al‐Nafai, Katarzyna Rzeszutek, Stuart Lyon, Christopher Jones, Douglas Beaumont\",\"doi\":\"10.1002/maco.202414529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel sacrificial zinc‐rich organic coatings, with varying additions of aluminium, were prepared and tested for anticorrosion performance. Electrochemical measurements (potential vs. time and electrochemical impedance spectroscopy) were carried out to investigate cathodic protection and barrier performance while neutral salt spray and immersion experiments tested long‐term performance. Analytical scanning electron microscopy and X‐ray diffraction were used to characterize coatings before and after testing. Formulations containing aluminium significantly outperformed the standard 100% zinc‐rich coating with the greatest improvement occurring at 10%–15% aluminium by volume in the dry film. This improvement was caused by the dispersal of aluminium between zinc particles, which improved packing and enabled greater efficiency in zinc consumption resulting in extended galvanic protection times for steel substrates. The expected zinc corrosion product (basic zinc chloride, simonkolleite) was present within the coating as well as a Zn–Al layered doubled hydroxide. The latter's presence demonstrates that dissolution of aluminium contributed to the longevity of the galvanic action. The new Zn–Al formulations are extremely promising alternatives to standard zinc‐rich epoxy coatings, significantly reducing zinc loading and increasing the sacrificial lifetime.\",\"PeriodicalId\":18223,\"journal\":{\"name\":\"Materials and Corrosion\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/maco.202414529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202414529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
制备并测试了不同铝添加量的新型牺牲性富锌有机涂层的防腐性能。电化学测量(电位与时间的关系和电化学阻抗光谱)用于研究阴极保护和阻挡性能,而中性盐雾和浸泡实验则用于测试长期性能。分析扫描电子显微镜和 X 射线衍射被用来描述测试前后涂层的特征。含铝配方的性能明显优于标准的 100% 富锌涂层,干膜中铝的体积分数为 10%-15%时,性能改善最大。这种改进是由于铝分散在锌颗粒之间,从而改善了填料,提高了锌的消耗效率,延长了钢基材的电化学保护时间。涂层中出现了预期的锌腐蚀产物(碱式氯化锌,simonkolleite)以及锌铝层状双氢氧化物。后者的存在表明,铝的溶解有助于延长电化学作用的寿命。新型锌-铝配方是标准富锌环氧涂层的极有前途的替代品,可显著降低锌负荷并延长牺牲寿命。
How aluminium additions improve the performance of zinc‐rich organic coatings
Novel sacrificial zinc‐rich organic coatings, with varying additions of aluminium, were prepared and tested for anticorrosion performance. Electrochemical measurements (potential vs. time and electrochemical impedance spectroscopy) were carried out to investigate cathodic protection and barrier performance while neutral salt spray and immersion experiments tested long‐term performance. Analytical scanning electron microscopy and X‐ray diffraction were used to characterize coatings before and after testing. Formulations containing aluminium significantly outperformed the standard 100% zinc‐rich coating with the greatest improvement occurring at 10%–15% aluminium by volume in the dry film. This improvement was caused by the dispersal of aluminium between zinc particles, which improved packing and enabled greater efficiency in zinc consumption resulting in extended galvanic protection times for steel substrates. The expected zinc corrosion product (basic zinc chloride, simonkolleite) was present within the coating as well as a Zn–Al layered doubled hydroxide. The latter's presence demonstrates that dissolution of aluminium contributed to the longevity of the galvanic action. The new Zn–Al formulations are extremely promising alternatives to standard zinc‐rich epoxy coatings, significantly reducing zinc loading and increasing the sacrificial lifetime.