基于卫星大地测量数据的萨哈林岛内岩石圈板块边界带调查

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Izvestiya, Physics of the Solid Earth Pub Date : 2024-07-18 DOI:10.1134/S1069351324700526
M. S. Gridchina, G. M. Steblov, I. S. Vladimirova, A. V. Basmanov
{"title":"基于卫星大地测量数据的萨哈林岛内岩石圈板块边界带调查","authors":"M. S. Gridchina,&nbsp;G. M. Steblov,&nbsp;I. S. Vladimirova,&nbsp;A. V. Basmanov","doi":"10.1134/S1069351324700526","DOIUrl":null,"url":null,"abstract":"<p>Modelling of the movements at the interface of the Amur and Okhotsk plates within the Sakhalin Island was performed using repeated satellite measurements on the Sakhalin Island and the nearest continental zone for the period of 2016–2021, as well as previously published data. When modelling fault-block kinematics, well-known relations were used to calculate reverse movements for buried rectangular dislocations in an elastic medium, which were implemented in the <i>TDEFNODE</i> software package. In the process of modelling the movements, the measured horizontal components of GNSS (Global Navigation Satellite System) velocities, the boundary and the mutual kinematics of the Amur and Okhotsk plates relative to the North American Plate according to the NNR-MORVEL56 model were used as the input data. This approach revealed persistent deviations in the direction of the simulated displacements of the Earth’s surface from the observed ones, which can be explained by the discrepancy between the a priori specified kinematics of the blocks and the observed movements. To eliminate the systematic discrepancy, it was necessary to allow the possibility of updating the mutual kinematics of the blocks. The repeated calculations, with the same input data but in a problem formulation that allowed refinement of block kinematics, led to suppression of systematic discrepancies between the model and measured displacements while retaining the random scatter. The movement parameters of the Amur and Okhotsk plates, which were refined during the modelling, show typical slight differences from the movement parameters of the corresponding large lithospheric plates (the Eurasian and North American plates), from which they are separated into independent blocks in modern constructions. The calculated locking coefficients in the Sakhalin segment of the interplate boundary reach maximal values at depths of 20–30 km. The obtained locking pattern at the plate interface is compared with the sources of the largest earthquakes in the last 30 years in the considered area, viz., Neftegorsk (May 27, 1995) and Uglegorsk (April 4, 2000) earthquakes, which are found to be associated with zones of maximal locking and a high locking gradient, both in the dip and strike directions.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"60 3","pages":"518 - 527"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Lithospheric Plate Boundary Zone within the Sakhalin Island Based on Satellite Geodesy Data\",\"authors\":\"M. S. Gridchina,&nbsp;G. M. Steblov,&nbsp;I. S. Vladimirova,&nbsp;A. V. Basmanov\",\"doi\":\"10.1134/S1069351324700526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modelling of the movements at the interface of the Amur and Okhotsk plates within the Sakhalin Island was performed using repeated satellite measurements on the Sakhalin Island and the nearest continental zone for the period of 2016–2021, as well as previously published data. When modelling fault-block kinematics, well-known relations were used to calculate reverse movements for buried rectangular dislocations in an elastic medium, which were implemented in the <i>TDEFNODE</i> software package. In the process of modelling the movements, the measured horizontal components of GNSS (Global Navigation Satellite System) velocities, the boundary and the mutual kinematics of the Amur and Okhotsk plates relative to the North American Plate according to the NNR-MORVEL56 model were used as the input data. This approach revealed persistent deviations in the direction of the simulated displacements of the Earth’s surface from the observed ones, which can be explained by the discrepancy between the a priori specified kinematics of the blocks and the observed movements. To eliminate the systematic discrepancy, it was necessary to allow the possibility of updating the mutual kinematics of the blocks. The repeated calculations, with the same input data but in a problem formulation that allowed refinement of block kinematics, led to suppression of systematic discrepancies between the model and measured displacements while retaining the random scatter. The movement parameters of the Amur and Okhotsk plates, which were refined during the modelling, show typical slight differences from the movement parameters of the corresponding large lithospheric plates (the Eurasian and North American plates), from which they are separated into independent blocks in modern constructions. The calculated locking coefficients in the Sakhalin segment of the interplate boundary reach maximal values at depths of 20–30 km. The obtained locking pattern at the plate interface is compared with the sources of the largest earthquakes in the last 30 years in the considered area, viz., Neftegorsk (May 27, 1995) and Uglegorsk (April 4, 2000) earthquakes, which are found to be associated with zones of maximal locking and a high locking gradient, both in the dip and strike directions.</p>\",\"PeriodicalId\":602,\"journal\":{\"name\":\"Izvestiya, Physics of the Solid Earth\",\"volume\":\"60 3\",\"pages\":\"518 - 527\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya, Physics of the Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1069351324700526\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S1069351324700526","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要-利用 2016-2021 年期间对萨哈林岛和最近大陆区域的重复卫星测量数据以及之前公布的数据,对萨哈林岛内阿穆尔板块和鄂霍次克板块交界面的运动进行了建模。在建立断层块运动学模型时,使用了众所周知的关系来计算弹性介质中埋藏的矩形位错的反向运动,这些关系已在 TDEFNODE 软件包中实现。在建立运动模型的过程中,使用了根据 NNR-MORVEL56 模型测得的全球导航卫星系统(GNSS)速度水平分量、阿穆尔板块和鄂霍次克板块相对于北美板块的边界和相互运动学作为输入数据。这种方法揭示了地球表面模拟位移方向与观测到的位移方向之间的持续偏差,这可以用先验地指定的板块运动学与观测到的运动之间的差异来解释。为了消除系统性差异,有必要允许更新块体的相互运动学。使用相同的输入数据进行重复计算,但在问题表述中允许细化木块运动学,从而抑制了模型与测量位移之间的系统性差异,同时保留了随机散点。在建模过程中完善的阿穆尔板块和鄂霍次克板块的运动参数与相应的大型岩石圈板块(欧亚板块和北美板块)的运动参数有典型的细微差别,在现代构造中,它们被分成独立的区块。计算得出的板块间边界萨哈林段锁定系数在 20-30 千米深处达到最大值。所获得的板块交界处的锁定模式与该地区过去 30 年最大地震(即涅夫特戈尔斯克地震(1995 年 5 月 27 日)和乌格列戈尔斯克地震(2000 年 4 月 4 日))的震源进行了比较,发现这两个地震与最大锁定区以及在倾角和走向方向上的高锁定梯度有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Lithospheric Plate Boundary Zone within the Sakhalin Island Based on Satellite Geodesy Data

Modelling of the movements at the interface of the Amur and Okhotsk plates within the Sakhalin Island was performed using repeated satellite measurements on the Sakhalin Island and the nearest continental zone for the period of 2016–2021, as well as previously published data. When modelling fault-block kinematics, well-known relations were used to calculate reverse movements for buried rectangular dislocations in an elastic medium, which were implemented in the TDEFNODE software package. In the process of modelling the movements, the measured horizontal components of GNSS (Global Navigation Satellite System) velocities, the boundary and the mutual kinematics of the Amur and Okhotsk plates relative to the North American Plate according to the NNR-MORVEL56 model were used as the input data. This approach revealed persistent deviations in the direction of the simulated displacements of the Earth’s surface from the observed ones, which can be explained by the discrepancy between the a priori specified kinematics of the blocks and the observed movements. To eliminate the systematic discrepancy, it was necessary to allow the possibility of updating the mutual kinematics of the blocks. The repeated calculations, with the same input data but in a problem formulation that allowed refinement of block kinematics, led to suppression of systematic discrepancies between the model and measured displacements while retaining the random scatter. The movement parameters of the Amur and Okhotsk plates, which were refined during the modelling, show typical slight differences from the movement parameters of the corresponding large lithospheric plates (the Eurasian and North American plates), from which they are separated into independent blocks in modern constructions. The calculated locking coefficients in the Sakhalin segment of the interplate boundary reach maximal values at depths of 20–30 km. The obtained locking pattern at the plate interface is compared with the sources of the largest earthquakes in the last 30 years in the considered area, viz., Neftegorsk (May 27, 1995) and Uglegorsk (April 4, 2000) earthquakes, which are found to be associated with zones of maximal locking and a high locking gradient, both in the dip and strike directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya, Physics of the Solid Earth
Izvestiya, Physics of the Solid Earth 地学-地球化学与地球物理
CiteScore
1.60
自引率
30.00%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
The Limits of Applicability of the Gutenberg–Richter Law in the Problems of Seismic Hazard and Risk Assessment Parameters of the Seismic Regime of the Eastern Sector of the Arctic Zone of the Russian Federation On the Use of Medium-Term Forecast Data for the Baikal Rift Zone in Seismic-Hazard Assessments Electromagnetic Trigger Effects in the Ionosphere–Atmosphere–Lithosphere System and Their Possible Use for Short-Term Earthquake Forecasting Features of Seismicity Anomalies before Strong Earthquakes in California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1