{"title":"评估延长太阳能光伏组件使用寿命的环境效益","authors":"Ahmed Burak Paç, Abdulkerim Gok","doi":"10.1002/gch2.202300245","DOIUrl":null,"url":null,"abstract":"<p>Requiring no fuel for generation and negligible material/energy for operation and maintenance, photovoltaic (PV) systems have environmental impacts mostly due to the production of modules and the commissioning of power plants. Thus, extending the service lifetime of these systems from 30 to 40 years through an enhanced lamination process for module production potentially reduces environmental impacts per unit energy generated. Life cycle assessment is employed to evaluate the environmental impacts under scenarios for resource utilizations for the new lamination process, operation and maintenance requirements in the extended service lifetime, and degradation rates of the devised modules. Extending the service lifetime significantly reduces environmental impacts across categories, with a 21–27% reduction in global warming potential on the pessimistic and optimistic ends. At least 20% impact reduction is achieved in most impact categories, even under a pessimistic scenario. Considering uncertainty models in the life cycle inventories, samples are generated for scenarios via Monte Carlo simulation, and with significant improvements with large effects in most environmental impact categories, deterministic impact comparisons are supported by ANOVA and Tukey tests. Production strategies for more durable and reliable PV modules have a significant potential in contributing to global sustainability efforts.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300245","citationCount":"0","resultStr":"{\"title\":\"Assessing the Environmental Benefits of Extending the Service Lifetime of Solar Photovoltaic Modules\",\"authors\":\"Ahmed Burak Paç, Abdulkerim Gok\",\"doi\":\"10.1002/gch2.202300245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Requiring no fuel for generation and negligible material/energy for operation and maintenance, photovoltaic (PV) systems have environmental impacts mostly due to the production of modules and the commissioning of power plants. Thus, extending the service lifetime of these systems from 30 to 40 years through an enhanced lamination process for module production potentially reduces environmental impacts per unit energy generated. Life cycle assessment is employed to evaluate the environmental impacts under scenarios for resource utilizations for the new lamination process, operation and maintenance requirements in the extended service lifetime, and degradation rates of the devised modules. Extending the service lifetime significantly reduces environmental impacts across categories, with a 21–27% reduction in global warming potential on the pessimistic and optimistic ends. At least 20% impact reduction is achieved in most impact categories, even under a pessimistic scenario. Considering uncertainty models in the life cycle inventories, samples are generated for scenarios via Monte Carlo simulation, and with significant improvements with large effects in most environmental impact categories, deterministic impact comparisons are supported by ANOVA and Tukey tests. Production strategies for more durable and reliable PV modules have a significant potential in contributing to global sustainability efforts.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"8 8\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300245\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300245\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300245","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Assessing the Environmental Benefits of Extending the Service Lifetime of Solar Photovoltaic Modules
Requiring no fuel for generation and negligible material/energy for operation and maintenance, photovoltaic (PV) systems have environmental impacts mostly due to the production of modules and the commissioning of power plants. Thus, extending the service lifetime of these systems from 30 to 40 years through an enhanced lamination process for module production potentially reduces environmental impacts per unit energy generated. Life cycle assessment is employed to evaluate the environmental impacts under scenarios for resource utilizations for the new lamination process, operation and maintenance requirements in the extended service lifetime, and degradation rates of the devised modules. Extending the service lifetime significantly reduces environmental impacts across categories, with a 21–27% reduction in global warming potential on the pessimistic and optimistic ends. At least 20% impact reduction is achieved in most impact categories, even under a pessimistic scenario. Considering uncertainty models in the life cycle inventories, samples are generated for scenarios via Monte Carlo simulation, and with significant improvements with large effects in most environmental impact categories, deterministic impact comparisons are supported by ANOVA and Tukey tests. Production strategies for more durable and reliable PV modules have a significant potential in contributing to global sustainability efforts.