Jungwon Kim;Seyong Lee;Beau Johnston;Jeffrey S. Vetter
{"title":"IRIS:跨平台异构计算的性能便携框架","authors":"Jungwon Kim;Seyong Lee;Beau Johnston;Jeffrey S. Vetter","doi":"10.1109/TPDS.2024.3429010","DOIUrl":null,"url":null,"abstract":"From edge to exascale, computer architectures are becoming more heterogeneous and complex. The systems typically have fat nodes, with multicore CPUs and multiple hardware accelerators such as GPUs, FPGAs, and DSPs. This complexity is causing a crisis in programming systems and performance portability. Several programming systems are working to address these challenges, but the increasing architectural diversity is forcing software stacks and applications to be specialized for each architecture. As we show, all of these approaches critically depend on their software framework for discovery, execution, scheduling, and data orchestration. To address this challenge, we believe that a more agile and proactive software framework is essential to increase performance portability and improve user productivity. To this end, we have designed and implemented IRIS: a performance-portable framework for cross-platform heterogeneous computing. IRIS can discover available resources, manage multiple diverse programming platforms (e.g., CUDA, Hexagon, HIP, Level Zero, OpenCL, OpenMP) simultaneously in the same execution, respect data dependencies, orchestrate data movement proactively, and provide for user-configurable scheduling. To simplify data movement, IRIS introduces a shared virtual device memory with relaxed consistency among different heterogeneous devices. IRIS also adds an automatic kernel workload partitioning technique using the polyhedral model so that it can resize kernels for a wide range of devices. Our evaluation on three architectures, ranging from Qualcomm Snapdragon to a Summit supercomputer node, shows that IRIS improves portability across a wide range of diverse heterogeneous architectures with negligible overhead.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 10","pages":"1796-1809"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IRIS: A Performance-Portable Framework for Cross-Platform Heterogeneous Computing\",\"authors\":\"Jungwon Kim;Seyong Lee;Beau Johnston;Jeffrey S. Vetter\",\"doi\":\"10.1109/TPDS.2024.3429010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From edge to exascale, computer architectures are becoming more heterogeneous and complex. The systems typically have fat nodes, with multicore CPUs and multiple hardware accelerators such as GPUs, FPGAs, and DSPs. This complexity is causing a crisis in programming systems and performance portability. Several programming systems are working to address these challenges, but the increasing architectural diversity is forcing software stacks and applications to be specialized for each architecture. As we show, all of these approaches critically depend on their software framework for discovery, execution, scheduling, and data orchestration. To address this challenge, we believe that a more agile and proactive software framework is essential to increase performance portability and improve user productivity. To this end, we have designed and implemented IRIS: a performance-portable framework for cross-platform heterogeneous computing. IRIS can discover available resources, manage multiple diverse programming platforms (e.g., CUDA, Hexagon, HIP, Level Zero, OpenCL, OpenMP) simultaneously in the same execution, respect data dependencies, orchestrate data movement proactively, and provide for user-configurable scheduling. To simplify data movement, IRIS introduces a shared virtual device memory with relaxed consistency among different heterogeneous devices. IRIS also adds an automatic kernel workload partitioning technique using the polyhedral model so that it can resize kernels for a wide range of devices. Our evaluation on three architectures, ranging from Qualcomm Snapdragon to a Summit supercomputer node, shows that IRIS improves portability across a wide range of diverse heterogeneous architectures with negligible overhead.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"35 10\",\"pages\":\"1796-1809\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605063/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605063/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
IRIS: A Performance-Portable Framework for Cross-Platform Heterogeneous Computing
From edge to exascale, computer architectures are becoming more heterogeneous and complex. The systems typically have fat nodes, with multicore CPUs and multiple hardware accelerators such as GPUs, FPGAs, and DSPs. This complexity is causing a crisis in programming systems and performance portability. Several programming systems are working to address these challenges, but the increasing architectural diversity is forcing software stacks and applications to be specialized for each architecture. As we show, all of these approaches critically depend on their software framework for discovery, execution, scheduling, and data orchestration. To address this challenge, we believe that a more agile and proactive software framework is essential to increase performance portability and improve user productivity. To this end, we have designed and implemented IRIS: a performance-portable framework for cross-platform heterogeneous computing. IRIS can discover available resources, manage multiple diverse programming platforms (e.g., CUDA, Hexagon, HIP, Level Zero, OpenCL, OpenMP) simultaneously in the same execution, respect data dependencies, orchestrate data movement proactively, and provide for user-configurable scheduling. To simplify data movement, IRIS introduces a shared virtual device memory with relaxed consistency among different heterogeneous devices. IRIS also adds an automatic kernel workload partitioning technique using the polyhedral model so that it can resize kernels for a wide range of devices. Our evaluation on three architectures, ranging from Qualcomm Snapdragon to a Summit supercomputer node, shows that IRIS improves portability across a wide range of diverse heterogeneous architectures with negligible overhead.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.