冲击载荷下高熵合金的微观结构演变机理

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Mechanics of Materials and Structures Pub Date : 2024-07-18 DOI:10.2140/jomms.2024.19.635
Qiang Li, Weizhi Zhou, Ye Du
{"title":"冲击载荷下高熵合金的微观结构演变机理","authors":"Qiang Li, Weizhi Zhou, Ye Du","doi":"10.2140/jomms.2024.19.635","DOIUrl":null,"url":null,"abstract":"<p>In this article, molecular dynamics simulation method was used to establish a high entropy alloy atomic model, and different impact velocities were applied to study the impact induced high entropy alloy phase transformation and dislocation motion mechanism. It creatively reveals the evolution mechanism of thermal mechanical coupling response of FeCoCrCuNi high entropy alloy under impact loading. The results show that when the impact speed is higher than 1400 m/s, the temperature rise breaks through 5000 K under the impact, and the high entropy alloy particles become amorphous. When the impact speed reaches 1000 m/s, the atomic motion speed of Ni and Cu atoms is slightly increased compared to other elements, and the face-centered cubic (FCC) phase is largely transformed into hexagonal close-packed (HCP) phase, with the dislocation density reaching its peak. After passing through the wavefront, twinning is formed under the action of cross slip and dislocation reaction, which prevents further expansion of dislocations and forms a dislocation hollow area, enhancing the strength of localized materials. </p>","PeriodicalId":50134,"journal":{"name":"Journal of Mechanics of Materials and Structures","volume":"20 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure evolution mechanism of high entropy alloys under impact loading\",\"authors\":\"Qiang Li, Weizhi Zhou, Ye Du\",\"doi\":\"10.2140/jomms.2024.19.635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, molecular dynamics simulation method was used to establish a high entropy alloy atomic model, and different impact velocities were applied to study the impact induced high entropy alloy phase transformation and dislocation motion mechanism. It creatively reveals the evolution mechanism of thermal mechanical coupling response of FeCoCrCuNi high entropy alloy under impact loading. The results show that when the impact speed is higher than 1400 m/s, the temperature rise breaks through 5000 K under the impact, and the high entropy alloy particles become amorphous. When the impact speed reaches 1000 m/s, the atomic motion speed of Ni and Cu atoms is slightly increased compared to other elements, and the face-centered cubic (FCC) phase is largely transformed into hexagonal close-packed (HCP) phase, with the dislocation density reaching its peak. After passing through the wavefront, twinning is formed under the action of cross slip and dislocation reaction, which prevents further expansion of dislocations and forms a dislocation hollow area, enhancing the strength of localized materials. </p>\",\"PeriodicalId\":50134,\"journal\":{\"name\":\"Journal of Mechanics of Materials and Structures\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics of Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2140/jomms.2024.19.635\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics of Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2140/jomms.2024.19.635","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用分子动力学模拟方法建立了高熵合金原子模型,并应用不同冲击速度研究了冲击诱导的高熵合金相变和位错运动机理。它创造性地揭示了FeCoCrCuNi高熵合金在冲击载荷作用下热机械耦合响应的演化机理。结果表明,当冲击速度大于 1400 m/s 时,冲击下的温升突破 5000 K,高熵合金颗粒变为非晶态。当冲击速度达到 1000 m/s 时,镍和铜原子的运动速度比其他元素略有增加,面心立方(FCC)相大部分转变为六方紧密堆积(HCP)相,位错密度达到峰值。穿过波阵面后,在交叉滑移和位错反应的作用下形成孪晶,阻止了位错的进一步扩展,形成了位错中空区,提高了局部材料的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure evolution mechanism of high entropy alloys under impact loading

In this article, molecular dynamics simulation method was used to establish a high entropy alloy atomic model, and different impact velocities were applied to study the impact induced high entropy alloy phase transformation and dislocation motion mechanism. It creatively reveals the evolution mechanism of thermal mechanical coupling response of FeCoCrCuNi high entropy alloy under impact loading. The results show that when the impact speed is higher than 1400 m/s, the temperature rise breaks through 5000 K under the impact, and the high entropy alloy particles become amorphous. When the impact speed reaches 1000 m/s, the atomic motion speed of Ni and Cu atoms is slightly increased compared to other elements, and the face-centered cubic (FCC) phase is largely transformed into hexagonal close-packed (HCP) phase, with the dislocation density reaching its peak. After passing through the wavefront, twinning is formed under the action of cross slip and dislocation reaction, which prevents further expansion of dislocations and forms a dislocation hollow area, enhancing the strength of localized materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics of Materials and Structures
Journal of Mechanics of Materials and Structures 工程技术-材料科学:综合
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
3.5 months
期刊介绍: Drawing from all areas of engineering, materials, and biology, the mechanics of solids, materials, and structures is experiencing considerable growth in directions not anticipated a few years ago, which involve the development of new technology requiring multidisciplinary simulation. The journal stimulates this growth by emphasizing fundamental advances that are relevant in dealing with problems of all length scales. Of growing interest are the multiscale problems with an interaction between small and large scale phenomena.
期刊最新文献
Comparative analysis of axial and radial mechanical properties of cortical bone using nanoindentation Frictional receding contact problem of a functionally graded orthotropic layer / orthotropic interlayer / isotropic half plane system Sound radiation and wave propagation of functionally graded carbon nanotube reinforced composite plates Dynamic response of an interlocking plastic-block wall with opening Microstructure evolution mechanism of high entropy alloys under impact loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1