{"title":"面向工业物联网的分层混合入侵检测模型","authors":"Zhendong Wang, Xin Yang, Zhiyuan Zeng, Daojing He, Sammy Chan","doi":"10.1007/s12083-024-01749-0","DOIUrl":null,"url":null,"abstract":"<p>With the continual evolution of network technologies, the Internet of Things (IoT) has permeated various sectors of society. However, over the past decade, the annual discovery of cyberattacks has shown an exponential surge, inflicting severe damage to economic development. Aiming at the high false alarm rate, poor classification performance and overfitting problems in current intrusion detection systems, this paper proposes an efficient hierarchical intrusion detection model named ET-DCANET. Initially, the extreme random tree algorithm is employed for feature selection to meticulously curate the optimal feature subset. Subsequently, the dilated convolution and dual attention mechanism (including channel attention and spatial attention) are introduced, and a strategy of gradual transition from coarse-grained learning to fine-grained learning is proposed by gradually narrowing the expansion rate of cavity convolution, and the DCNN and dual attention modules are progressively refined to effectively utilize the synergy of DCNN and Attention to extract spatial and temporal features. This gradual transition from coarse-grained learning to fine-grained learning helps to better balance global and local information when dealing with complex data, and improves the performance and generalization ability of the model. To confront the class imbalance issue within the dataset, a novel loss function, EQLv2, is introduced as a substitute for the conventional cross-entropy (CE) loss. This innovation directs the model's focus toward minority class samples, ultimately enhancing the overall performance of the model. The proposed model shows excellent intrusion detection on the NSL-KDD, UNSW-NB15, and X-IIoTID datasets with accuracy rates of 99.68%, 98.50%, and 99.85%, respectively.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"13 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hierarchical hybrid intrusion detection model for industrial internet of things\",\"authors\":\"Zhendong Wang, Xin Yang, Zhiyuan Zeng, Daojing He, Sammy Chan\",\"doi\":\"10.1007/s12083-024-01749-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the continual evolution of network technologies, the Internet of Things (IoT) has permeated various sectors of society. However, over the past decade, the annual discovery of cyberattacks has shown an exponential surge, inflicting severe damage to economic development. Aiming at the high false alarm rate, poor classification performance and overfitting problems in current intrusion detection systems, this paper proposes an efficient hierarchical intrusion detection model named ET-DCANET. Initially, the extreme random tree algorithm is employed for feature selection to meticulously curate the optimal feature subset. Subsequently, the dilated convolution and dual attention mechanism (including channel attention and spatial attention) are introduced, and a strategy of gradual transition from coarse-grained learning to fine-grained learning is proposed by gradually narrowing the expansion rate of cavity convolution, and the DCNN and dual attention modules are progressively refined to effectively utilize the synergy of DCNN and Attention to extract spatial and temporal features. This gradual transition from coarse-grained learning to fine-grained learning helps to better balance global and local information when dealing with complex data, and improves the performance and generalization ability of the model. To confront the class imbalance issue within the dataset, a novel loss function, EQLv2, is introduced as a substitute for the conventional cross-entropy (CE) loss. This innovation directs the model's focus toward minority class samples, ultimately enhancing the overall performance of the model. The proposed model shows excellent intrusion detection on the NSL-KDD, UNSW-NB15, and X-IIoTID datasets with accuracy rates of 99.68%, 98.50%, and 99.85%, respectively.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01749-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01749-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A hierarchical hybrid intrusion detection model for industrial internet of things
With the continual evolution of network technologies, the Internet of Things (IoT) has permeated various sectors of society. However, over the past decade, the annual discovery of cyberattacks has shown an exponential surge, inflicting severe damage to economic development. Aiming at the high false alarm rate, poor classification performance and overfitting problems in current intrusion detection systems, this paper proposes an efficient hierarchical intrusion detection model named ET-DCANET. Initially, the extreme random tree algorithm is employed for feature selection to meticulously curate the optimal feature subset. Subsequently, the dilated convolution and dual attention mechanism (including channel attention and spatial attention) are introduced, and a strategy of gradual transition from coarse-grained learning to fine-grained learning is proposed by gradually narrowing the expansion rate of cavity convolution, and the DCNN and dual attention modules are progressively refined to effectively utilize the synergy of DCNN and Attention to extract spatial and temporal features. This gradual transition from coarse-grained learning to fine-grained learning helps to better balance global and local information when dealing with complex data, and improves the performance and generalization ability of the model. To confront the class imbalance issue within the dataset, a novel loss function, EQLv2, is introduced as a substitute for the conventional cross-entropy (CE) loss. This innovation directs the model's focus toward minority class samples, ultimately enhancing the overall performance of the model. The proposed model shows excellent intrusion detection on the NSL-KDD, UNSW-NB15, and X-IIoTID datasets with accuracy rates of 99.68%, 98.50%, and 99.85%, respectively.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.