反弹碰撞冲击放大器的放大效果和影响因素

IF 2.3 3区 工程技术 Q2 ACOUSTICS Journal of Vibration and Control Pub Date : 2024-07-20 DOI:10.1177/10775463241255757
Ye Shi, Lei Lei, Ming Yan, Xiping Gu
{"title":"反弹碰撞冲击放大器的放大效果和影响因素","authors":"Ye Shi, Lei Lei, Ming Yan, Xiping Gu","doi":"10.1177/10775463241255757","DOIUrl":null,"url":null,"abstract":"In strong impact environment, traditional impact test platform cannot obtain high peak acceleration, resulting in products being hindered in the testing process. The objective of this paper is to build the rebound-collision impact amplifier that can be used in a strong impact environment and to investigate its mechanism, influencing factors, and amplification effect. The kinematic model of the rebound-collision impact amplifier was established by combining dynamic contact theory with classical collision theory, considering energy loss, and introducing collision recovery coefficient. A theoretical formula for calculating acceleration and acceleration magnification was derived. The effects of the collision duration ratio, the mass ratio of the amplification platform to the falling platform, and the reserved clearance on the acceleration magnification were investigated, respectively. Finally, the feasibility test was verified. The test results show that the rebound-collision impact amplifier motion model is in good agreement with the theoretical model. Acceleration magnification decreases with increasing mass ratio and increases with increasing collision duration ratio. The ideal reserved clearance can be found to make the acceleration of the amplification platform obtain the maximum value. Selecting the ideal reserved clearance is more conducive to impact amplification.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"43 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amplification effect and influencing factors of rebound-collision impact amplifier\",\"authors\":\"Ye Shi, Lei Lei, Ming Yan, Xiping Gu\",\"doi\":\"10.1177/10775463241255757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In strong impact environment, traditional impact test platform cannot obtain high peak acceleration, resulting in products being hindered in the testing process. The objective of this paper is to build the rebound-collision impact amplifier that can be used in a strong impact environment and to investigate its mechanism, influencing factors, and amplification effect. The kinematic model of the rebound-collision impact amplifier was established by combining dynamic contact theory with classical collision theory, considering energy loss, and introducing collision recovery coefficient. A theoretical formula for calculating acceleration and acceleration magnification was derived. The effects of the collision duration ratio, the mass ratio of the amplification platform to the falling platform, and the reserved clearance on the acceleration magnification were investigated, respectively. Finally, the feasibility test was verified. The test results show that the rebound-collision impact amplifier motion model is in good agreement with the theoretical model. Acceleration magnification decreases with increasing mass ratio and increases with increasing collision duration ratio. The ideal reserved clearance can be found to make the acceleration of the amplification platform obtain the maximum value. Selecting the ideal reserved clearance is more conducive to impact amplification.\",\"PeriodicalId\":17511,\"journal\":{\"name\":\"Journal of Vibration and Control\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10775463241255757\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241255757","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在强冲击环境下,传统的冲击测试平台无法获得较高的峰值加速度,导致产品在测试过程中受到阻碍。本文旨在建立可用于强冲击环境的反弹碰撞冲击放大器,并研究其机理、影响因素和放大效果。通过将动态接触理论与经典碰撞理论相结合,考虑能量损失并引入碰撞恢复系数,建立了反弹-碰撞冲击放大器的运动学模型。得出了计算加速度和加速度放大的理论公式。分别研究了碰撞持续时间比、放大平台与下落平台的质量比以及预留间隙对加速度放大倍数的影响。最后,进行了可行性试验验证。试验结果表明,反弹碰撞冲击放大器运动模型与理论模型非常吻合。加速度放大率随质量比的增大而减小,随碰撞持续时间比的增大而增大。可以找到理想的预留间隙,使放大平台的加速度达到最大值。选择理想的预留间隙更有利于冲击放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amplification effect and influencing factors of rebound-collision impact amplifier
In strong impact environment, traditional impact test platform cannot obtain high peak acceleration, resulting in products being hindered in the testing process. The objective of this paper is to build the rebound-collision impact amplifier that can be used in a strong impact environment and to investigate its mechanism, influencing factors, and amplification effect. The kinematic model of the rebound-collision impact amplifier was established by combining dynamic contact theory with classical collision theory, considering energy loss, and introducing collision recovery coefficient. A theoretical formula for calculating acceleration and acceleration magnification was derived. The effects of the collision duration ratio, the mass ratio of the amplification platform to the falling platform, and the reserved clearance on the acceleration magnification were investigated, respectively. Finally, the feasibility test was verified. The test results show that the rebound-collision impact amplifier motion model is in good agreement with the theoretical model. Acceleration magnification decreases with increasing mass ratio and increases with increasing collision duration ratio. The ideal reserved clearance can be found to make the acceleration of the amplification platform obtain the maximum value. Selecting the ideal reserved clearance is more conducive to impact amplification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vibration and Control
Journal of Vibration and Control 工程技术-工程:机械
CiteScore
5.20
自引率
17.90%
发文量
336
审稿时长
6 months
期刊介绍: The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.
期刊最新文献
Finite element formulation for free vibration of the functionally graded curved nonlocal nanobeam resting on nonlocal elastic foundation Multi-objective optimization of inerter-based building mass dampers A low-complexity highly accurate sound source localization algorithm based on sound sensor arrays Tailored for vehicle horn: A novel sound source capture method A novel optimal resonance band selection method for wheelset-bearing fault diagnosis based on tunable-Q wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1