Danrong Zhang, Dipali Jindal, Nimisha Roy, Prashanth Vangla, J. David Frost
{"title":"利用正向无标记机器学习方法加强滑坡易发性绘图:印度查莫利的案例研究","authors":"Danrong Zhang, Dipali Jindal, Nimisha Roy, Prashanth Vangla, J. David Frost","doi":"10.1186/s40677-024-00281-w","DOIUrl":null,"url":null,"abstract":"The Indian Himalayas' susceptibility to landslides, particularly as a location where climate change effects may be event catalysts, necessitates the development of dependable landslide susceptibility maps (LSM). This study diverges from traditional binary classification models, framing LSM as a positive-unlabeled learning problem. This approach acknowledges that regions without recorded landslides are not necessarily at low risk but could simply have not experienced landslides yet. The study utilizes novel positive-unlabeled learning-enhanced algorithms—Random Forest, K-Nearest Neighbor, and Decision Tree—to create LSM for Chamoli district, India. Eleven causative factors for landslides are identified, including elevation, aspect, slope, geology, geomorphology, distance to lineament, lithology, NDVI, distance to river, distance to road and residential land use. To address spatial correlation biases, instead of randomly splitting the dataset, the study adopts spatial splitting to get the training and testing datasets. The study reveals that positive-unlabeled learning substantially improves the Area Under Curve and recall, leading to a more conservative LSM compared to binary classification methods. Analysis shows that the southern region of Chamoli exhibits high recall but lower accuracy, suggesting a latent high landslide susceptibility despite a lack of historical landslides in this region. The study also quantifies the impact of human activity on landslide risk, indicating an elevated threat to life and the local economy, especially in Chamoli's southwestern areas.","PeriodicalId":37025,"journal":{"name":"Geoenvironmental Disasters","volume":"32 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing landslide susceptibility mapping using a positive-unlabeled machine learning approach: a case study in Chamoli, India\",\"authors\":\"Danrong Zhang, Dipali Jindal, Nimisha Roy, Prashanth Vangla, J. David Frost\",\"doi\":\"10.1186/s40677-024-00281-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Indian Himalayas' susceptibility to landslides, particularly as a location where climate change effects may be event catalysts, necessitates the development of dependable landslide susceptibility maps (LSM). This study diverges from traditional binary classification models, framing LSM as a positive-unlabeled learning problem. This approach acknowledges that regions without recorded landslides are not necessarily at low risk but could simply have not experienced landslides yet. The study utilizes novel positive-unlabeled learning-enhanced algorithms—Random Forest, K-Nearest Neighbor, and Decision Tree—to create LSM for Chamoli district, India. Eleven causative factors for landslides are identified, including elevation, aspect, slope, geology, geomorphology, distance to lineament, lithology, NDVI, distance to river, distance to road and residential land use. To address spatial correlation biases, instead of randomly splitting the dataset, the study adopts spatial splitting to get the training and testing datasets. The study reveals that positive-unlabeled learning substantially improves the Area Under Curve and recall, leading to a more conservative LSM compared to binary classification methods. Analysis shows that the southern region of Chamoli exhibits high recall but lower accuracy, suggesting a latent high landslide susceptibility despite a lack of historical landslides in this region. The study also quantifies the impact of human activity on landslide risk, indicating an elevated threat to life and the local economy, especially in Chamoli's southwestern areas.\",\"PeriodicalId\":37025,\"journal\":{\"name\":\"Geoenvironmental Disasters\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoenvironmental Disasters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40677-024-00281-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenvironmental Disasters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40677-024-00281-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Enhancing landslide susceptibility mapping using a positive-unlabeled machine learning approach: a case study in Chamoli, India
The Indian Himalayas' susceptibility to landslides, particularly as a location where climate change effects may be event catalysts, necessitates the development of dependable landslide susceptibility maps (LSM). This study diverges from traditional binary classification models, framing LSM as a positive-unlabeled learning problem. This approach acknowledges that regions without recorded landslides are not necessarily at low risk but could simply have not experienced landslides yet. The study utilizes novel positive-unlabeled learning-enhanced algorithms—Random Forest, K-Nearest Neighbor, and Decision Tree—to create LSM for Chamoli district, India. Eleven causative factors for landslides are identified, including elevation, aspect, slope, geology, geomorphology, distance to lineament, lithology, NDVI, distance to river, distance to road and residential land use. To address spatial correlation biases, instead of randomly splitting the dataset, the study adopts spatial splitting to get the training and testing datasets. The study reveals that positive-unlabeled learning substantially improves the Area Under Curve and recall, leading to a more conservative LSM compared to binary classification methods. Analysis shows that the southern region of Chamoli exhibits high recall but lower accuracy, suggesting a latent high landslide susceptibility despite a lack of historical landslides in this region. The study also quantifies the impact of human activity on landslide risk, indicating an elevated threat to life and the local economy, especially in Chamoli's southwestern areas.
期刊介绍:
Geoenvironmental Disasters is an international journal with a focus on multi-disciplinary applied and fundamental research and the effects and impacts on infrastructure, society and the environment of geoenvironmental disasters triggered by various types of geo-hazards (e.g. earthquakes, volcanic activity, landslides, tsunamis, intensive erosion and hydro-meteorological events).
The integrated study of Geoenvironmental Disasters is an emerging and composite field of research interfacing with areas traditionally within civil engineering, earth sciences, atmospheric sciences and the life sciences. It centers on the interactions within and between the Earth''s ground, air and water environments, all of which are affected by climate, geological, morphological and anthropological processes; and biological and ecological cycles. Disasters are dynamic forces which can change the Earth pervasively, rapidly, or abruptly, and which can generate lasting effects on the natural and built environments.
The journal publishes research papers, case studies and quick reports of recent geoenvironmental disasters, review papers and technical reports of various geoenvironmental disaster-related case studies. The focus on case studies and quick reports of recent geoenvironmental disasters helps to advance the practical understanding of geoenvironmental disasters and to inform future research priorities; they are a major component of the journal. The journal aims for the rapid publication of research papers at a high scientific level. The journal welcomes proposals for special issues reflecting the trends in geoenvironmental disaster reduction and monothematic issues. Researchers and practitioners are encouraged to submit original, unpublished contributions.