Wei-Ming Hu, Qiang Wang, Jin Gao, Bing Li, Stephen Maybank
{"title":"DCFNet:用于视觉跟踪的判别相关滤波器网络","authors":"Wei-Ming Hu, Qiang Wang, Jin Gao, Bing Li, Stephen Maybank","doi":"10.1007/s11390-023-3788-3","DOIUrl":null,"url":null,"abstract":"<p>CNN (convolutional neural network) based real time trackers usually do not carry out online network update in order to maintain rapid tracking speed. This inevitably influences the adaptability to changes in object appearance. Correlation filter based trackers can update the model parameters online in real time. In this paper, we present an end-to-end lightweight network architecture, namely Discriminant Correlation Filter Network (DCFNet). A differentiable DCF (discriminant correlation filter) layer is incorporated into a Siamese network architecture in order to learn the convolutional features and the correlation filter simultaneously. The correlation filter can be efficiently updated online. In previous work, we introduced a joint scale-position space to the DCFNet, forming a scale DCFNet which carries out the predictions of object scale and position simultaneously. We combine the scale DCFNet with the convolutional-deconvolutional network, learning both the high-level embedding space representations and the low-level fine-grained representations for images. The adaptability of the fine-grained correlation analysis and the generalization capability of the semantic embedding are complementary for visual tracking. The back-propagation is derived in the Fourier frequency domain throughout the entire work, preserving the efficiency of the DCF. Extensive evaluations on the OTB (Object Tracking Benchmark) and VOT (Visual Object Tracking Challenge) datasets demonstrate that the proposed trackers have fast speeds, while maintaining tracking accuracy.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"2 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DCFNet: Discriminant Correlation Filters Network for Visual Tracking\",\"authors\":\"Wei-Ming Hu, Qiang Wang, Jin Gao, Bing Li, Stephen Maybank\",\"doi\":\"10.1007/s11390-023-3788-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>CNN (convolutional neural network) based real time trackers usually do not carry out online network update in order to maintain rapid tracking speed. This inevitably influences the adaptability to changes in object appearance. Correlation filter based trackers can update the model parameters online in real time. In this paper, we present an end-to-end lightweight network architecture, namely Discriminant Correlation Filter Network (DCFNet). A differentiable DCF (discriminant correlation filter) layer is incorporated into a Siamese network architecture in order to learn the convolutional features and the correlation filter simultaneously. The correlation filter can be efficiently updated online. In previous work, we introduced a joint scale-position space to the DCFNet, forming a scale DCFNet which carries out the predictions of object scale and position simultaneously. We combine the scale DCFNet with the convolutional-deconvolutional network, learning both the high-level embedding space representations and the low-level fine-grained representations for images. The adaptability of the fine-grained correlation analysis and the generalization capability of the semantic embedding are complementary for visual tracking. The back-propagation is derived in the Fourier frequency domain throughout the entire work, preserving the efficiency of the DCF. Extensive evaluations on the OTB (Object Tracking Benchmark) and VOT (Visual Object Tracking Challenge) datasets demonstrate that the proposed trackers have fast speeds, while maintaining tracking accuracy.</p>\",\"PeriodicalId\":50222,\"journal\":{\"name\":\"Journal of Computer Science and Technology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11390-023-3788-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-023-3788-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
DCFNet: Discriminant Correlation Filters Network for Visual Tracking
CNN (convolutional neural network) based real time trackers usually do not carry out online network update in order to maintain rapid tracking speed. This inevitably influences the adaptability to changes in object appearance. Correlation filter based trackers can update the model parameters online in real time. In this paper, we present an end-to-end lightweight network architecture, namely Discriminant Correlation Filter Network (DCFNet). A differentiable DCF (discriminant correlation filter) layer is incorporated into a Siamese network architecture in order to learn the convolutional features and the correlation filter simultaneously. The correlation filter can be efficiently updated online. In previous work, we introduced a joint scale-position space to the DCFNet, forming a scale DCFNet which carries out the predictions of object scale and position simultaneously. We combine the scale DCFNet with the convolutional-deconvolutional network, learning both the high-level embedding space representations and the low-level fine-grained representations for images. The adaptability of the fine-grained correlation analysis and the generalization capability of the semantic embedding are complementary for visual tracking. The back-propagation is derived in the Fourier frequency domain throughout the entire work, preserving the efficiency of the DCF. Extensive evaluations on the OTB (Object Tracking Benchmark) and VOT (Visual Object Tracking Challenge) datasets demonstrate that the proposed trackers have fast speeds, while maintaining tracking accuracy.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas