作为一种低成本双功能粘合剂,胶化淀粉可制成无梭锌碘水电池

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-07-20 DOI:10.1007/s12598-024-02916-1
Zheng-Tai Yu, Zong-Shuai Gong, Rui-Hang Wen, Ya-Jun Hou, Zhi-Qiang Luo, Zhi-Hao Yuan, Ning Zhang
{"title":"作为一种低成本双功能粘合剂,胶化淀粉可制成无梭锌碘水电池","authors":"Zheng-Tai Yu,&nbsp;Zong-Shuai Gong,&nbsp;Rui-Hang Wen,&nbsp;Ya-Jun Hou,&nbsp;Zhi-Qiang Luo,&nbsp;Zhi-Hao Yuan,&nbsp;Ning Zhang","doi":"10.1007/s12598-024-02916-1","DOIUrl":null,"url":null,"abstract":"<div><p>Rechargeable aqueous zinc–iodine (Zn–I<sub>2</sub>) batteries are widely regarded as a promising contender for energy-storage devices, due to their intrinsic safety, low cost, and high capacity. However, the severe shuttle effect of polyiodides and the large volume change of I<sub>2</sub> cathode induce severe capacity loss and poor electrochemical reversibility, hindering their commercial applications. Herein, we report that the low-cost gelatinized starch (G-starch) can be used as a bifunctional binder for Zn–I<sub>2</sub> batteries to circumvent the above problems simultaneously. Based on both calculation and experimental data, it is demonstrated that the double-helix structure of G-starch with both α-1,4- and α-1,6-glycosidic bonds can strongly interact with polyiodides to suppress the shuttle effect. Moreover, the G-starch with multiple hydrogen-bonded cross-linking networks exhibits a much-enhanced adhesion ability and can buffer the volume expansion of active materials. In contrast, the traditional carboxymethyl cellulose sodium-based aqueous binder lacks these capabilities. As a result, the G-starch binder enables the aqueous Zn–I<sub>2</sub> battery to achieve a high reversible capacity of 212.4 mAh·g<sup>−1</sup> at 0.2 A·g<sup>−1</sup> after 1000 cycles and ultralong-cycling life over 48,000 cycles with 135.4 mAh·g<sup>−1</sup> and 89.6% capacity retention at 2 A·g<sup>−1</sup>. This work develops a simple yet efficient strategy to construct high-performance Zn–I<sub>2</sub> batteries.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 12","pages":"6351 - 6361"},"PeriodicalIF":9.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gelatinized starch as a low-cost and bifunctional binder enables shuttle-free aqueous zinc–iodine batteries\",\"authors\":\"Zheng-Tai Yu,&nbsp;Zong-Shuai Gong,&nbsp;Rui-Hang Wen,&nbsp;Ya-Jun Hou,&nbsp;Zhi-Qiang Luo,&nbsp;Zhi-Hao Yuan,&nbsp;Ning Zhang\",\"doi\":\"10.1007/s12598-024-02916-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rechargeable aqueous zinc–iodine (Zn–I<sub>2</sub>) batteries are widely regarded as a promising contender for energy-storage devices, due to their intrinsic safety, low cost, and high capacity. However, the severe shuttle effect of polyiodides and the large volume change of I<sub>2</sub> cathode induce severe capacity loss and poor electrochemical reversibility, hindering their commercial applications. Herein, we report that the low-cost gelatinized starch (G-starch) can be used as a bifunctional binder for Zn–I<sub>2</sub> batteries to circumvent the above problems simultaneously. Based on both calculation and experimental data, it is demonstrated that the double-helix structure of G-starch with both α-1,4- and α-1,6-glycosidic bonds can strongly interact with polyiodides to suppress the shuttle effect. Moreover, the G-starch with multiple hydrogen-bonded cross-linking networks exhibits a much-enhanced adhesion ability and can buffer the volume expansion of active materials. In contrast, the traditional carboxymethyl cellulose sodium-based aqueous binder lacks these capabilities. As a result, the G-starch binder enables the aqueous Zn–I<sub>2</sub> battery to achieve a high reversible capacity of 212.4 mAh·g<sup>−1</sup> at 0.2 A·g<sup>−1</sup> after 1000 cycles and ultralong-cycling life over 48,000 cycles with 135.4 mAh·g<sup>−1</sup> and 89.6% capacity retention at 2 A·g<sup>−1</sup>. This work develops a simple yet efficient strategy to construct high-performance Zn–I<sub>2</sub> batteries.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"43 12\",\"pages\":\"6351 - 6361\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-02916-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02916-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可充电锌碘水溶液(Zn-I2)电池因其固有的安全性、低成本和高容量而被广泛认为是储能设备的有力竞争者。然而,聚碘化物的严重穿梭效应和 I2 阴极的巨大体积变化导致了严重的容量损失和较差的电化学可逆性,阻碍了它们的商业应用。在此,我们报告了低成本的糊化淀粉(G-starch)可用作 Zn-I2 电池的双功能粘合剂,从而同时规避上述问题。基于计算和实验数据,证明了具有α-1,4-和α-1,6-糖苷键的双螺旋结构的 G-淀粉能与聚碘化物产生强烈的相互作用,从而抑制穿梭效应。此外,具有多个氢键交联网络的 G-淀粉具有更强的粘附能力,可以缓冲活性材料的体积膨胀。相比之下,传统的羧甲基纤维素钠水基粘合剂则缺乏这些功能。因此,G-淀粉粘合剂能使水性 Zn-I2 电池在 0.2 A-g-1 循环 1000 次后达到 212.4 mAh-g-1 的高可逆容量,在 2 A-g-1 循环 48,000 次后达到 135.4 mAh-g-1 的超长循环寿命和 89.6% 的容量保持率。这项工作为构建高性能 Zn-I2 电池开发了一种简单而高效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gelatinized starch as a low-cost and bifunctional binder enables shuttle-free aqueous zinc–iodine batteries

Rechargeable aqueous zinc–iodine (Zn–I2) batteries are widely regarded as a promising contender for energy-storage devices, due to their intrinsic safety, low cost, and high capacity. However, the severe shuttle effect of polyiodides and the large volume change of I2 cathode induce severe capacity loss and poor electrochemical reversibility, hindering their commercial applications. Herein, we report that the low-cost gelatinized starch (G-starch) can be used as a bifunctional binder for Zn–I2 batteries to circumvent the above problems simultaneously. Based on both calculation and experimental data, it is demonstrated that the double-helix structure of G-starch with both α-1,4- and α-1,6-glycosidic bonds can strongly interact with polyiodides to suppress the shuttle effect. Moreover, the G-starch with multiple hydrogen-bonded cross-linking networks exhibits a much-enhanced adhesion ability and can buffer the volume expansion of active materials. In contrast, the traditional carboxymethyl cellulose sodium-based aqueous binder lacks these capabilities. As a result, the G-starch binder enables the aqueous Zn–I2 battery to achieve a high reversible capacity of 212.4 mAh·g−1 at 0.2 A·g−1 after 1000 cycles and ultralong-cycling life over 48,000 cycles with 135.4 mAh·g−1 and 89.6% capacity retention at 2 A·g−1. This work develops a simple yet efficient strategy to construct high-performance Zn–I2 batteries.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling Preparation and electrocatalytic performance of novel-integrated Ni-Mo sulfide electrode materials for water splitting Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1