用于增强型硅射频基板的缺陷工程学

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Physica Status Solidi A-applications and Materials Science Pub Date : 2024-07-19 DOI:10.1002/pssa.202400215
Martin Perrosé, Yoann Baron, Baptiste Lefaucher, Pablo Acosta Alba, Jean‐Pierre Raskin
{"title":"用于增强型硅射频基板的缺陷工程学","authors":"Martin Perrosé, Yoann Baron, Baptiste Lefaucher, Pablo Acosta Alba, Jean‐Pierre Raskin","doi":"10.1002/pssa.202400215","DOIUrl":null,"url":null,"abstract":"Herein, high‐resistivity silicon substrates with specific He<jats:sup>+</jats:sup> ion implantations to mitigate the parasitic surface conduction effect are studied. Several postimplantation thermal annealing conditions are investigated. Substrate performance is assessed at radiofrequencies (RFs) using the small‐signal characterization of coplanar waveguides (CPW) structures. The best effective resistivity (<jats:italic>ρ</jats:italic><jats:sub>eff</jats:sub>) of 4 kΩ cm is achieved with the wafer annealed at 600 °C for 2 h. This <jats:italic>ρ</jats:italic><jats:sub>eff</jats:sub> value is also stable as a function of DC bias applied to the CPWs. Those high RF performances originate from the nature of the defects created by ion implantation. Defects are deeply analyzed using spectroscopy measurement and scanning transmission electron microscopy. Combining these measurements, it is shown that {311} defects are probably responsible for the achieved high RF performances. Finally, the link between charge carriers trapping in the RF domain and defects nature is discussed to develop a defects engineering strategy for low‐loss RF substrates. The proposed fabrication method enables the fabrication of RF passivation layer locally over the wafer, and thus the cointegration of RF devices with fully depleted silicon‐on‐insulator technology.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"35 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect Engineering for Enhanced Silicon Radiofrequency Substrates\",\"authors\":\"Martin Perrosé, Yoann Baron, Baptiste Lefaucher, Pablo Acosta Alba, Jean‐Pierre Raskin\",\"doi\":\"10.1002/pssa.202400215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, high‐resistivity silicon substrates with specific He<jats:sup>+</jats:sup> ion implantations to mitigate the parasitic surface conduction effect are studied. Several postimplantation thermal annealing conditions are investigated. Substrate performance is assessed at radiofrequencies (RFs) using the small‐signal characterization of coplanar waveguides (CPW) structures. The best effective resistivity (<jats:italic>ρ</jats:italic><jats:sub>eff</jats:sub>) of 4 kΩ cm is achieved with the wafer annealed at 600 °C for 2 h. This <jats:italic>ρ</jats:italic><jats:sub>eff</jats:sub> value is also stable as a function of DC bias applied to the CPWs. Those high RF performances originate from the nature of the defects created by ion implantation. Defects are deeply analyzed using spectroscopy measurement and scanning transmission electron microscopy. Combining these measurements, it is shown that {311} defects are probably responsible for the achieved high RF performances. Finally, the link between charge carriers trapping in the RF domain and defects nature is discussed to develop a defects engineering strategy for low‐loss RF substrates. The proposed fabrication method enables the fabrication of RF passivation layer locally over the wafer, and thus the cointegration of RF devices with fully depleted silicon‐on‐insulator technology.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400215\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400215","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了特定 He+ 离子植入的高电阻率硅衬底,以减轻寄生表面传导效应。研究了几种植入后热退火条件。利用共面波导(CPW)结构的小信号特性评估了基底在射频(RF)中的性能。在 600 °C 下退火 2 小时的晶片达到了 4 kΩ cm 的最佳有效电阻率 (ρeff)。这些高射频性能源于离子注入产生的缺陷的性质。利用光谱测量和扫描透射电子显微镜对缺陷进行了深入分析。结合这些测量结果表明,{311}缺陷可能是实现高射频性能的原因。最后,讨论了射频域中电荷载流子捕获与缺陷性质之间的联系,为低损耗射频基底制定了缺陷工程策略。所提出的制造方法可以在晶圆上局部制造射频钝化层,从而将射频器件与全耗尽绝缘体硅技术结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defect Engineering for Enhanced Silicon Radiofrequency Substrates
Herein, high‐resistivity silicon substrates with specific He+ ion implantations to mitigate the parasitic surface conduction effect are studied. Several postimplantation thermal annealing conditions are investigated. Substrate performance is assessed at radiofrequencies (RFs) using the small‐signal characterization of coplanar waveguides (CPW) structures. The best effective resistivity (ρeff) of 4 kΩ cm is achieved with the wafer annealed at 600 °C for 2 h. This ρeff value is also stable as a function of DC bias applied to the CPWs. Those high RF performances originate from the nature of the defects created by ion implantation. Defects are deeply analyzed using spectroscopy measurement and scanning transmission electron microscopy. Combining these measurements, it is shown that {311} defects are probably responsible for the achieved high RF performances. Finally, the link between charge carriers trapping in the RF domain and defects nature is discussed to develop a defects engineering strategy for low‐loss RF substrates. The proposed fabrication method enables the fabrication of RF passivation layer locally over the wafer, and thus the cointegration of RF devices with fully depleted silicon‐on‐insulator technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
期刊最新文献
Plasma‐Assisted Preparation and Properties of Chitosan‐Based Magnetic Hydrogels Performance Enhancement of SnS Solar Cell with Tungsten Disulfide Electron Transport Layer and Molybdenum Trioxide Hole Transport Layer Advancements in Piezoelectric‐Enabled Devices for Optical Communication Structural Distortions and Short‐Range Magnetism in a Honeycomb Iridate Cu3ZnIr2O6 Enhancing Reliability and Regeneration of Single Passivated Emitter Rear Contact Solar Cell Modules through Alternating Current Power Application to Mitigate Light and Elevated Temperature‐Induced Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1