{"title":"来自圆柱体侧壁的热流对振动流体中热毛细管液滴流动的影响:三维研究","authors":"Yousuf Alhendal, Sara Touzani","doi":"10.1007/s00231-024-03499-4","DOIUrl":null,"url":null,"abstract":"<p>The thermocapillary motion of droplet in a vibrating fluid in a cylinder heated from the top and sides and cooled from the bottom is studied, using a three-dimensional computational fluid dynamics (CFD) model based on volume of fluid (VOF) created with Ansys-Fluent software. The outcomes support the accuracy of the Marangoni phenomenon and are in line with data published in literature. The behavior of the drop is not only impacted by the temperature difference between the top and bottom, but also by heated side surfaces and mostly by vibration. Different flow patterns are observed which directly impact the droplet’s arrival time. The results proof that the neglected frequency and amplitudes of vibration in the presence of gravity have a significant and evident impact on the behavior of fluids in a zero-gravity environment. The change of vessel height also has a significant influence especially on the host fluid properties.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of heat flow from the cylinder sidewalls on thermocapillary droplet flow in a vibrating fluid: 3D study\",\"authors\":\"Yousuf Alhendal, Sara Touzani\",\"doi\":\"10.1007/s00231-024-03499-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The thermocapillary motion of droplet in a vibrating fluid in a cylinder heated from the top and sides and cooled from the bottom is studied, using a three-dimensional computational fluid dynamics (CFD) model based on volume of fluid (VOF) created with Ansys-Fluent software. The outcomes support the accuracy of the Marangoni phenomenon and are in line with data published in literature. The behavior of the drop is not only impacted by the temperature difference between the top and bottom, but also by heated side surfaces and mostly by vibration. Different flow patterns are observed which directly impact the droplet’s arrival time. The results proof that the neglected frequency and amplitudes of vibration in the presence of gravity have a significant and evident impact on the behavior of fluids in a zero-gravity environment. The change of vessel height also has a significant influence especially on the host fluid properties.</p>\",\"PeriodicalId\":12908,\"journal\":{\"name\":\"Heat and Mass Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00231-024-03499-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00231-024-03499-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Impact of heat flow from the cylinder sidewalls on thermocapillary droplet flow in a vibrating fluid: 3D study
The thermocapillary motion of droplet in a vibrating fluid in a cylinder heated from the top and sides and cooled from the bottom is studied, using a three-dimensional computational fluid dynamics (CFD) model based on volume of fluid (VOF) created with Ansys-Fluent software. The outcomes support the accuracy of the Marangoni phenomenon and are in line with data published in literature. The behavior of the drop is not only impacted by the temperature difference between the top and bottom, but also by heated side surfaces and mostly by vibration. Different flow patterns are observed which directly impact the droplet’s arrival time. The results proof that the neglected frequency and amplitudes of vibration in the presence of gravity have a significant and evident impact on the behavior of fluids in a zero-gravity environment. The change of vessel height also has a significant influence especially on the host fluid properties.
期刊介绍:
This journal serves the circulation of new developments in the field of basic research of heat and mass transfer phenomena, as well as related material properties and their measurements. Thereby applications to engineering problems are promoted.
The journal is the traditional "Wärme- und Stoffübertragung" which was changed to "Heat and Mass Transfer" back in 1995.