硫化氢在铁变态反应中的新作用。

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants & redox signaling Pub Date : 2024-08-21 DOI:10.1089/ars.2023.0535
Yi-Wen Zhu, Zi-Tao Liu, Ao-Qi Tang, Xiao-Yi Liang, Yan Wang, Ya-Fang Liu, Yu-Qing Jin, Wei Gao, Hang Yuan, Da-Yong Wang, Xin-Ying Ji, Dong-Dong Wu
{"title":"硫化氢在铁变态反应中的新作用。","authors":"Yi-Wen Zhu, Zi-Tao Liu, Ao-Qi Tang, Xiao-Yi Liang, Yan Wang, Ya-Fang Liu, Yu-Qing Jin, Wei Gao, Hang Yuan, Da-Yong Wang, Xin-Ying Ji, Dong-Dong Wu","doi":"10.1089/ars.2023.0535","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Significance:</i></b> Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H<sub>2</sub>S) in ferroptosis has emerged at the forefront of research. <b><i>Recent Advances:</i></b> Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H<sub>2</sub>S inhibition of ferroptosis. Safe, effective, and tolerable novel H<sub>2</sub>S donors have been developed and have shown promising results in phase I clinical trials. <b><i>Critical Issues:</i></b> Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H<sub>2</sub>S is still a challenging task. <b><i>Future Directions:</i></b> Discovering more reliable and stable novel H<sub>2</sub>S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H<sub>2</sub>S, determining their safety, efficacy, and tolerance.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Emerging Roles of Hydrogen Sulfide in Ferroptosis.\",\"authors\":\"Yi-Wen Zhu, Zi-Tao Liu, Ao-Qi Tang, Xiao-Yi Liang, Yan Wang, Ya-Fang Liu, Yu-Qing Jin, Wei Gao, Hang Yuan, Da-Yong Wang, Xin-Ying Ji, Dong-Dong Wu\",\"doi\":\"10.1089/ars.2023.0535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Significance:</i></b> Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H<sub>2</sub>S) in ferroptosis has emerged at the forefront of research. <b><i>Recent Advances:</i></b> Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H<sub>2</sub>S inhibition of ferroptosis. Safe, effective, and tolerable novel H<sub>2</sub>S donors have been developed and have shown promising results in phase I clinical trials. <b><i>Critical Issues:</i></b> Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H<sub>2</sub>S is still a challenging task. <b><i>Future Directions:</i></b> Discovering more reliable and stable novel H<sub>2</sub>S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H<sub>2</sub>S, determining their safety, efficacy, and tolerance.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2023.0535\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2023.0535","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

意义重大:铁过氧化是一种以大量脂质过氧化介导的膜损伤为特征的调节性细胞死亡形式,是多系统疾病进化的一部分。例如,神经退行性疾病、慢性阻塞性肺病和急性呼吸窘迫综合征、骨质疏松症和骨关节炎等。自从硫化氢(H2S)被确定为生物体内的第三种气体传递介质以来,它在铁变态反应中的复杂作用已成为研究的前沿:在相关代谢途径中发现了新的靶点,包括转铁蛋白受体 1、胱氨酸/谷氨酸反转运体等,同时还探索了新的信号通路,特别是 p53 信号通路和一氧化氮/核因子红细胞 2 相关因子 2 信号通路等。最近发现,许多疾病,如肺气肿和气道炎症、心肌疾病、老化动脉内皮功能障碍和脑外伤等,都可以直接通过 H2S 抑制铁变态反应来缓解。目前已开发出安全、有效、可耐受的新型 H2S 供体,并在一期临床试验中显示出良好的效果:关键问题:抑制铁氧化信号通路和致癌因素之间的复杂串扰导致了癌症风险。值得注意的是,H2S 的靶向递送仍是一项具有挑战性的任务:未来方向:发现更可靠、更稳定的新型 H2S 供体并实现其靶向递送,将有助于进一步开展与 H2S 抑制铁氧化相关疾病的临床试验,确定其安全性、有效性和耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Emerging Roles of Hydrogen Sulfide in Ferroptosis.

Significance: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. Recent Advances: Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. Critical Issues: Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. Future Directions: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
期刊最新文献
Development of Calcium-Dependent Phospholipase A2 Inhibitors to Target Cellular Senescence and Oxidative Stress in Neurodegenerative Diseases. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Adeno-Associated Virus-Mediated Dickkopf-1 Gene Transduction Reduces Silica-Induced Oxidative Stress and Silicosis in Mouse Lung. Nrf2-Dependent Adaptation to Oxidative Stress Protects Against Progression of Diabetic Nephropathy. Suppression of CDK1/Drp1-Mediated Mitochondrial Fission Attenuates Dexamethasone-Induced Extracellular Matrix Deposition in the Trabecular Meshwork.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1