Yasaman Kiani Doustvaghe, Azadeh Haeri, Mahsa Mollapour Sisakht, Mohammad Amir Amirkhani, Hossein Vatanpour
{"title":"用于皮肤给药的重组人表皮生长因子脂质体和转移体:开发、表征和细胞毒性评估。","authors":"Yasaman Kiani Doustvaghe, Azadeh Haeri, Mahsa Mollapour Sisakht, Mohammad Amir Amirkhani, Hossein Vatanpour","doi":"10.1002/ddr.22234","DOIUrl":null,"url":null,"abstract":"<p>Recombinant human epidermal growth factor (rhEGF) is widely utilized as an antiaging compound in wound-healing therapies and cosmetic purposes. However, topical administration of rhEGF has limited treatment outcomes because of its poor percutaneous penetration and rapid proteinase degradation. To overcome these obstacles, this study aims to develop and characterize rhEGF-containing conventional liposomes (rhEGF-CLs) and transferosomes (rhEGF-TFs) as efficient dermal carriers. Physicochemical characterization such as particle size, zeta potential (ZP), morphology, encapsulation efficiency (EE%), and release properties of nanocarriers as well as in vitro cytotoxicity in human dermal fibroblast (HDF) and human embryonic kidney (HEK293) cell lines were investigated. rhEGF-TFs at the rhEGF concentration ranging from 0.05 to 1.0 μg/mL were chosen as the optimum formulation due to the desired release profile, acceptable EE%, optimal cell proliferation, and minimal cytotoxicity compared to the control and free rhEGF. However, higher concentrations caused a decrease in cell viability. The ratio 20:80 of Tween 80 to lipid was optimal for rhEGF-TFs-2, which had an average diameter of 233.23 ± 2.64 nm, polydispersity index of 0.33 ± 0.05, ZP of −15.46 ± 0.29 mV, and EE% of 60.50 ± 1.91. The formulations remained stable at 5°C for at least 1 month. TEM and SEM microscopy revealed that rhEGF-TFs-2 had a regular shape and unilamellar structure. In vitro drug release studies confirmed the superiority of rhEGF-TFs-2 in terms of optimal cumulative release of rhEGF approximately 82% within 24 h. Franz diffusion cell study showed higher rhEGF-TFs-2 skin permeation compared to free rhEGF solution. Taken together, we concluded that rhEGF-TFs can be used as a promising formulation for wound healing and skin regeneration products.</p>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"85 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recombinant human epidermal growth factor-loaded liposomes and transferosomes for dermal delivery: Development, characterization, and cytotoxicity evaluation\",\"authors\":\"Yasaman Kiani Doustvaghe, Azadeh Haeri, Mahsa Mollapour Sisakht, Mohammad Amir Amirkhani, Hossein Vatanpour\",\"doi\":\"10.1002/ddr.22234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recombinant human epidermal growth factor (rhEGF) is widely utilized as an antiaging compound in wound-healing therapies and cosmetic purposes. However, topical administration of rhEGF has limited treatment outcomes because of its poor percutaneous penetration and rapid proteinase degradation. To overcome these obstacles, this study aims to develop and characterize rhEGF-containing conventional liposomes (rhEGF-CLs) and transferosomes (rhEGF-TFs) as efficient dermal carriers. Physicochemical characterization such as particle size, zeta potential (ZP), morphology, encapsulation efficiency (EE%), and release properties of nanocarriers as well as in vitro cytotoxicity in human dermal fibroblast (HDF) and human embryonic kidney (HEK293) cell lines were investigated. rhEGF-TFs at the rhEGF concentration ranging from 0.05 to 1.0 μg/mL were chosen as the optimum formulation due to the desired release profile, acceptable EE%, optimal cell proliferation, and minimal cytotoxicity compared to the control and free rhEGF. However, higher concentrations caused a decrease in cell viability. The ratio 20:80 of Tween 80 to lipid was optimal for rhEGF-TFs-2, which had an average diameter of 233.23 ± 2.64 nm, polydispersity index of 0.33 ± 0.05, ZP of −15.46 ± 0.29 mV, and EE% of 60.50 ± 1.91. The formulations remained stable at 5°C for at least 1 month. TEM and SEM microscopy revealed that rhEGF-TFs-2 had a regular shape and unilamellar structure. In vitro drug release studies confirmed the superiority of rhEGF-TFs-2 in terms of optimal cumulative release of rhEGF approximately 82% within 24 h. Franz diffusion cell study showed higher rhEGF-TFs-2 skin permeation compared to free rhEGF solution. Taken together, we concluded that rhEGF-TFs can be used as a promising formulation for wound healing and skin regeneration products.</p>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.22234\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.22234","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Recombinant human epidermal growth factor-loaded liposomes and transferosomes for dermal delivery: Development, characterization, and cytotoxicity evaluation
Recombinant human epidermal growth factor (rhEGF) is widely utilized as an antiaging compound in wound-healing therapies and cosmetic purposes. However, topical administration of rhEGF has limited treatment outcomes because of its poor percutaneous penetration and rapid proteinase degradation. To overcome these obstacles, this study aims to develop and characterize rhEGF-containing conventional liposomes (rhEGF-CLs) and transferosomes (rhEGF-TFs) as efficient dermal carriers. Physicochemical characterization such as particle size, zeta potential (ZP), morphology, encapsulation efficiency (EE%), and release properties of nanocarriers as well as in vitro cytotoxicity in human dermal fibroblast (HDF) and human embryonic kidney (HEK293) cell lines were investigated. rhEGF-TFs at the rhEGF concentration ranging from 0.05 to 1.0 μg/mL were chosen as the optimum formulation due to the desired release profile, acceptable EE%, optimal cell proliferation, and minimal cytotoxicity compared to the control and free rhEGF. However, higher concentrations caused a decrease in cell viability. The ratio 20:80 of Tween 80 to lipid was optimal for rhEGF-TFs-2, which had an average diameter of 233.23 ± 2.64 nm, polydispersity index of 0.33 ± 0.05, ZP of −15.46 ± 0.29 mV, and EE% of 60.50 ± 1.91. The formulations remained stable at 5°C for at least 1 month. TEM and SEM microscopy revealed that rhEGF-TFs-2 had a regular shape and unilamellar structure. In vitro drug release studies confirmed the superiority of rhEGF-TFs-2 in terms of optimal cumulative release of rhEGF approximately 82% within 24 h. Franz diffusion cell study showed higher rhEGF-TFs-2 skin permeation compared to free rhEGF solution. Taken together, we concluded that rhEGF-TFs can be used as a promising formulation for wound healing and skin regeneration products.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.