Ryan Seamus McGee, Grant Kinsler, Dmitri Petrov, Mikhail Tikhonov
{"title":"通过纠正条形码处理偏差提高批量体质测定的准确性。","authors":"Ryan Seamus McGee, Grant Kinsler, Dmitri Petrov, Mikhail Tikhonov","doi":"10.1093/molbev/msae152","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring the fitnesses of genetic variants is a fundamental objective in evolutionary biology. A standard approach for measuring microbial fitnesses in bulk involves labeling a library of genetic variants with unique sequence barcodes, competing the labeled strains in batch culture, and using deep sequencing to track changes in the barcode abundances over time. However, idiosyncratic properties of barcodes can induce nonuniform amplification or uneven sequencing coverage that causes some barcodes to be over- or under-represented in samples. This systematic bias can result in erroneous read count trajectories and misestimates of fitness. Here, we develop a computational method, named REBAR (Removing the Effects of Bias through Analysis of Residuals), for inferring the effects of barcode processing bias by leveraging the structure of systematic deviations in the data. We illustrate this approach by applying it to two independent data sets, and demonstrate that this method estimates and corrects for bias more accurately than standard proxies, such as GC-based corrections. REBAR mitigates bias and improves fitness estimates in high-throughput assays without introducing additional complexity to the experimental protocols, with potential applications in a range of experimental evolution and mutation screening contexts.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316221/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving the Accuracy of Bulk Fitness Assays by Correcting Barcode Processing Biases.\",\"authors\":\"Ryan Seamus McGee, Grant Kinsler, Dmitri Petrov, Mikhail Tikhonov\",\"doi\":\"10.1093/molbev/msae152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measuring the fitnesses of genetic variants is a fundamental objective in evolutionary biology. A standard approach for measuring microbial fitnesses in bulk involves labeling a library of genetic variants with unique sequence barcodes, competing the labeled strains in batch culture, and using deep sequencing to track changes in the barcode abundances over time. However, idiosyncratic properties of barcodes can induce nonuniform amplification or uneven sequencing coverage that causes some barcodes to be over- or under-represented in samples. This systematic bias can result in erroneous read count trajectories and misestimates of fitness. Here, we develop a computational method, named REBAR (Removing the Effects of Bias through Analysis of Residuals), for inferring the effects of barcode processing bias by leveraging the structure of systematic deviations in the data. We illustrate this approach by applying it to two independent data sets, and demonstrate that this method estimates and corrects for bias more accurately than standard proxies, such as GC-based corrections. REBAR mitigates bias and improves fitness estimates in high-throughput assays without introducing additional complexity to the experimental protocols, with potential applications in a range of experimental evolution and mutation screening contexts.</p>\",\"PeriodicalId\":18730,\"journal\":{\"name\":\"Molecular biology and evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316221/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology and evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/molbev/msae152\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae152","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Improving the Accuracy of Bulk Fitness Assays by Correcting Barcode Processing Biases.
Measuring the fitnesses of genetic variants is a fundamental objective in evolutionary biology. A standard approach for measuring microbial fitnesses in bulk involves labeling a library of genetic variants with unique sequence barcodes, competing the labeled strains in batch culture, and using deep sequencing to track changes in the barcode abundances over time. However, idiosyncratic properties of barcodes can induce nonuniform amplification or uneven sequencing coverage that causes some barcodes to be over- or under-represented in samples. This systematic bias can result in erroneous read count trajectories and misestimates of fitness. Here, we develop a computational method, named REBAR (Removing the Effects of Bias through Analysis of Residuals), for inferring the effects of barcode processing bias by leveraging the structure of systematic deviations in the data. We illustrate this approach by applying it to two independent data sets, and demonstrate that this method estimates and corrects for bias more accurately than standard proxies, such as GC-based corrections. REBAR mitigates bias and improves fitness estimates in high-throughput assays without introducing additional complexity to the experimental protocols, with potential applications in a range of experimental evolution and mutation screening contexts.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.