转录组和代谢组综合分析揭示了镉通过诱导内质网应激导致小鼠精原细胞凋亡的机制

IF 3.3 4区 医学 Q2 REPRODUCTIVE BIOLOGY Reproductive toxicology Pub Date : 2024-07-20 DOI:10.1016/j.reprotox.2024.108664
{"title":"转录组和代谢组综合分析揭示了镉通过诱导内质网应激导致小鼠精原细胞凋亡的机制","authors":"","doi":"10.1016/j.reprotox.2024.108664","DOIUrl":null,"url":null,"abstract":"<div><p>Cadmium (Cd) is a well-recognized male reproductive toxicant that can cause testicular germ cell apoptosis. However, the underlying mechanism needs investigation. CG-1 mouse spermatogonia (spg) cells were treated with 20 μM cadmium chloride (CdCl<sub>2</sub>) for 24 h. Cell apoptosis was measured, and the expressions of key genes and protein biomarkers involved in endoplasmic reticulum (ER) stress were detected, respectively. Untargeted metabolomics was performed to identify different metabolites, and transcriptome analysis was conducted to screen differentially expressed genes (DEGs). Our results indicated that CdCl<sub>2</sub> exposure caused cell apoptosis, and DEGs were involved in several apoptosis-related pathways. Moreover, CdCl<sub>2</sub> exposure apparently increased the mRNA and protein expressions levels of both GRP78 and ATF6α, disrupting the expression of various metabolites, particularly amino acids. Conclusively, our study reveals the pathway of CdCl<sub>2</sub> toxicity on mouse spg, providing a deep understanding of CdCl<sub>2</sub>-induced testicular toxicity.</p></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated transcriptome and metabolomic analyses uncover the mechanism of cadmium-caused mouse spermatogonia apoptosis via inducing endoplasmic reticulum stress\",\"authors\":\"\",\"doi\":\"10.1016/j.reprotox.2024.108664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cadmium (Cd) is a well-recognized male reproductive toxicant that can cause testicular germ cell apoptosis. However, the underlying mechanism needs investigation. CG-1 mouse spermatogonia (spg) cells were treated with 20 μM cadmium chloride (CdCl<sub>2</sub>) for 24 h. Cell apoptosis was measured, and the expressions of key genes and protein biomarkers involved in endoplasmic reticulum (ER) stress were detected, respectively. Untargeted metabolomics was performed to identify different metabolites, and transcriptome analysis was conducted to screen differentially expressed genes (DEGs). Our results indicated that CdCl<sub>2</sub> exposure caused cell apoptosis, and DEGs were involved in several apoptosis-related pathways. Moreover, CdCl<sub>2</sub> exposure apparently increased the mRNA and protein expressions levels of both GRP78 and ATF6α, disrupting the expression of various metabolites, particularly amino acids. Conclusively, our study reveals the pathway of CdCl<sub>2</sub> toxicity on mouse spg, providing a deep understanding of CdCl<sub>2</sub>-induced testicular toxicity.</p></div>\",\"PeriodicalId\":21137,\"journal\":{\"name\":\"Reproductive toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089062382400131X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089062382400131X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

镉(Cd)是一种公认的男性生殖毒性物质,可导致睾丸生殖细胞凋亡。然而,其潜在机制仍有待研究。用 20μM 氯化镉(CdCl2)处理 CG-1 小鼠精原细胞(spg)24 小时。分别测定了细胞凋亡、内质网(ER)应激的关键基因和蛋白质生物标志物的表达。非靶向代谢组学用于鉴定不同的代谢物,转录组分析用于筛选差异表达基因(DEGs)。结果表明,CdCl2 暴露会导致细胞凋亡,而 DEGs 参与了多个与细胞凋亡相关的通路。此外,氯化镉暴露明显增加了 GRP78 和 ATF6α 的 mRNA 和蛋白表达水平,破坏了多种代谢产物,尤其是氨基酸的表达。最后,我们的研究揭示了氯化镉对小鼠睾丸的毒性途径,为深入了解氯化镉诱导的睾丸毒性提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated transcriptome and metabolomic analyses uncover the mechanism of cadmium-caused mouse spermatogonia apoptosis via inducing endoplasmic reticulum stress

Cadmium (Cd) is a well-recognized male reproductive toxicant that can cause testicular germ cell apoptosis. However, the underlying mechanism needs investigation. CG-1 mouse spermatogonia (spg) cells were treated with 20 μM cadmium chloride (CdCl2) for 24 h. Cell apoptosis was measured, and the expressions of key genes and protein biomarkers involved in endoplasmic reticulum (ER) stress were detected, respectively. Untargeted metabolomics was performed to identify different metabolites, and transcriptome analysis was conducted to screen differentially expressed genes (DEGs). Our results indicated that CdCl2 exposure caused cell apoptosis, and DEGs were involved in several apoptosis-related pathways. Moreover, CdCl2 exposure apparently increased the mRNA and protein expressions levels of both GRP78 and ATF6α, disrupting the expression of various metabolites, particularly amino acids. Conclusively, our study reveals the pathway of CdCl2 toxicity on mouse spg, providing a deep understanding of CdCl2-induced testicular toxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reproductive toxicology
Reproductive toxicology 生物-毒理学
CiteScore
6.50
自引率
3.00%
发文量
131
审稿时长
45 days
期刊介绍: Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine. All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.
期刊最新文献
Prolonged exposure to rosuvastatin from pre-puberty to adulthood impairs sperm quality in mice and leads to paternally mediated developmental toxicity Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM2.5) – Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved Examination of piperonyl butoxide developmental toxicity as a Sonic hedgehog pathway inhibitor targeting limb and palate morphogenesis Editorial Board Emerging and novel technologies in reproductive and developmental toxicology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1