脊椎动物肢体模式的通用优化设计和生物启发设计的启示。

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2024-08-09 DOI:10.1088/1748-3190/ad66a3
Stuart Burgess
{"title":"脊椎动物肢体模式的通用优化设计和生物启发设计的启示。","authors":"Stuart Burgess","doi":"10.1088/1748-3190/ad66a3","DOIUrl":null,"url":null,"abstract":"<p><p>This paper broadly summarizes the variation of design features found in vertebrate limbs and analyses the resultant versatility and multifunctionality in order to make recommendations for bioinspired robotics. The vertebrate limb pattern (e.g. shoulder, elbow, wrist and digits) has been proven to be very successful in many different applications in the animal kingdom. However, the actual level of optimality of the limb for each animal application is not clear because for some cases (e.g. whale flippers and bird wings), the basic skeletal layout is assumed to be highly constrained by evolutionary ancestry. This paper addresses this important and fundamental question of optimality by analysing six limbs with contrasting functions: human arm, whale flipper, bird wing, human leg, feline hindlimb and frog hindlimb. A central finding of this study is that the vertebrate limb pattern is highly versatile and optimal not just for arms and legs but also for flippers and wings. One key design feature of the vertebrate limb pattern is that of networks of segmented bones that enable smooth morphing of shapes as well as multifunctioning structures. Another key design feature is that of linkage mechanisms that fine-tune motions and mechanical advantage. A total of 52 biomechanical design features of the vertebrate limb are identified and tabulated for these applications. These tables can be a helpful reference for designers of bioinspired robotic and prosthetic limbs. The vertebrate limb has significant potential for the bioinspired design of robotic and prosthetic limbs, especially because of progress in the development of soft actuators.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal optimal design in the vertebrate limb pattern and lessons for bioinspired design.\",\"authors\":\"Stuart Burgess\",\"doi\":\"10.1088/1748-3190/ad66a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper broadly summarizes the variation of design features found in vertebrate limbs and analyses the resultant versatility and multifunctionality in order to make recommendations for bioinspired robotics. The vertebrate limb pattern (e.g. shoulder, elbow, wrist and digits) has been proven to be very successful in many different applications in the animal kingdom. However, the actual level of optimality of the limb for each animal application is not clear because for some cases (e.g. whale flippers and bird wings), the basic skeletal layout is assumed to be highly constrained by evolutionary ancestry. This paper addresses this important and fundamental question of optimality by analysing six limbs with contrasting functions: human arm, whale flipper, bird wing, human leg, feline hindlimb and frog hindlimb. A central finding of this study is that the vertebrate limb pattern is highly versatile and optimal not just for arms and legs but also for flippers and wings. One key design feature of the vertebrate limb pattern is that of networks of segmented bones that enable smooth morphing of shapes as well as multifunctioning structures. Another key design feature is that of linkage mechanisms that fine-tune motions and mechanical advantage. A total of 52 biomechanical design features of the vertebrate limb are identified and tabulated for these applications. These tables can be a helpful reference for designers of bioinspired robotic and prosthetic limbs. The vertebrate limb has significant potential for the bioinspired design of robotic and prosthetic limbs, especially because of progress in the development of soft actuators.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad66a3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad66a3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文概括了脊椎动物四肢的各种设计特征,并分析了由此产生的多功能性,从而为生物启发机器人学提出建议。脊椎动物的肢体模式(如肩部、肘部、腕部和手指)已被证明在动物界的许多不同应用中非常成功。然而,肢体在每种动物应用中的实际优化程度并不明确,因为在某些情况下(如鲸鱼的脚蹼和鸟类的翅膀),基本骨骼布局被认为受到进化祖先的高度约束。本文通过分析六种功能截然不同的肢体:人类手臂、鲸鱼鳍、鸟类翅膀、人类腿部、猫科动物后肢和青蛙后肢,探讨了最优性这一重要的基本问题。这项研究的核心发现是,脊椎动物的肢体模式具有很强的通用性,不仅对手臂和腿,而且对鳍和翼都是最佳的。脊椎动物肢体模式的一个关键设计特征是由分节骨骼组成的网络,可实现形状的平滑变形和多功能结构。另一个关键的设计特征是联动机构,可对运动和机械优势进行微调。针对这些应用,共确定了脊椎动物肢体的 52 个生物力学设计特征,并将其列表。这些表格可作为生物启发机器人和假肢设计者的有用参考。脊椎动物肢体在机器人和义肢的生物启发设计方面具有巨大的潜力,特别是因为软致动器的开发取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Universal optimal design in the vertebrate limb pattern and lessons for bioinspired design.

This paper broadly summarizes the variation of design features found in vertebrate limbs and analyses the resultant versatility and multifunctionality in order to make recommendations for bioinspired robotics. The vertebrate limb pattern (e.g. shoulder, elbow, wrist and digits) has been proven to be very successful in many different applications in the animal kingdom. However, the actual level of optimality of the limb for each animal application is not clear because for some cases (e.g. whale flippers and bird wings), the basic skeletal layout is assumed to be highly constrained by evolutionary ancestry. This paper addresses this important and fundamental question of optimality by analysing six limbs with contrasting functions: human arm, whale flipper, bird wing, human leg, feline hindlimb and frog hindlimb. A central finding of this study is that the vertebrate limb pattern is highly versatile and optimal not just for arms and legs but also for flippers and wings. One key design feature of the vertebrate limb pattern is that of networks of segmented bones that enable smooth morphing of shapes as well as multifunctioning structures. Another key design feature is that of linkage mechanisms that fine-tune motions and mechanical advantage. A total of 52 biomechanical design features of the vertebrate limb are identified and tabulated for these applications. These tables can be a helpful reference for designers of bioinspired robotic and prosthetic limbs. The vertebrate limb has significant potential for the bioinspired design of robotic and prosthetic limbs, especially because of progress in the development of soft actuators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
Enhancing postural stability in musculoskeletal quadrupedal locomotion through tension feedback for CPG-based controller. One-shot manufacturable soft-robotic pump inspired by embryonic tubular heart. Role of viscoelasticity in the adhesion of mushroom-shaped pillars. A biomimetic fruit fly robot for studying the neuromechanics of legged locomotion. Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1