DANTE-CAIPI 加速对比增强 3D T1:基于深度学习的血管壁 MR 图像质量改进。

Mona Kharaji, Gador Canton, Yin Guo, Mohamad Hosaam Mosi, Zechen Zhou, Niranjan Balu, Mahmud Mossa-Basha
{"title":"DANTE-CAIPI 加速对比增强 3D T1:基于深度学习的血管壁 MR 图像质量改进。","authors":"Mona Kharaji, Gador Canton, Yin Guo, Mohamad Hosaam Mosi, Zechen Zhou, Niranjan Balu, Mahmud Mossa-Basha","doi":"10.3174/ajnr.A8424","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Accelerated and blood-suppressed postcontrast 3D intracranial vessel wall MRI (IVW) enables high-resolution rapid scanning but is associated with low SNR. We hypothesized that a deep-learning (DL) denoising algorithm applied to accelerated, blood-suppressed postcontrast IVW can yield high-quality images with reduced artifacts and higher SNR in shorter scan times.</p><p><strong>Materials and methods: </strong>Sixty-four consecutive patients underwent IVW, including conventional postcontrast 3D T1-sampling perfection with application-optimized contrasts by using different flip angle evolution (SPACE) and delay alternating with nutation for tailored excitation (DANTE) blood-suppressed and CAIPIRINHIA-accelerated (CAIPI) 3D T1-weighted TSE postcontrast sequences (DANTE-CAIPI-SPACE). DANTE-CAIPI-SPACE acquisitions were then denoised by using an unrolled deep convolutional network (DANTE-CAIPI-SPACE+DL). SPACE, DANTE-CAIPI-SPACE, and DANTE-CAIPI-SPACE+DL images were compared for overall image quality, SNR, severity of artifacts, arterial and venous suppression, and lesion assessment by using 4-point or 5-point Likert scales. Quantitative evaluation of SNR and contrast-to-noise ratio (CNR) was performed.</p><p><strong>Results: </strong>DANTE-CAIPI-SPACE+DL showed significantly reduced arterial (1 [1-1.75] versus 3 [3-4], <i>P</i> < .001) and venous flow artifacts (1 [1-2] versus 3 [3-4], <i>P</i> < .001) compared with SPACE. There was no significant difference between DANTE-CAIPI-SPACE+DL and SPACE in terms of image quality, SNR, artifact ratings, and lesion assessment. For SNR ratings, DANTE-CAIPI-SPACE+DL was significantly better compared with DANTE-CAIPI-SPACE (2 [1-2], versus 3 [2-3], <i>P</i> < .001). No statistically significant differences were found between DANTE-CAIPI-SPACE and DANTE-CAIPI-SPACE+DL for image quality, artifact, arterial blood and venous blood flow artifacts, and lesion assessment. Quantitative vessel wall SNR and CNR median values were significantly higher for DANTE-CAIPI-SPACE+DL (SNR: 9.71, CNR: 4.24) compared with DANTE-CAIPI-SPACE (SNR: 5.50, CNR: 2.64) (<i>P</i> < .001 for each), but there was no significant difference between SPACE (SNR: 10.82, CNR: 5.21) and DANTE-CAIPI-SPACE+DL.</p><p><strong>Conclusions: </strong>DL denoised postcontrast T1-weighted DANTE-CAIPI-SPACE accelerated and blood-suppressed IVW showed improved flow suppression with a shorter scan time and equivalent qualitative and quantitative SNR measures relative to conventional postcontrast IVW. It also improved SNR metrics relative to postcontrast DANTE-CAIPI-SPACE IVW. Implementing DL denoised DANTE-CAIPI-SPACE IVW has the potential to shorten protocol time while maintaining or improving the image quality of IVW.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DANTE-CAIPI Accelerated Contrast-Enhanced 3D T1: Deep Learning-Based Image Quality Improvement for Vessel Wall MRI.\",\"authors\":\"Mona Kharaji, Gador Canton, Yin Guo, Mohamad Hosaam Mosi, Zechen Zhou, Niranjan Balu, Mahmud Mossa-Basha\",\"doi\":\"10.3174/ajnr.A8424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Accelerated and blood-suppressed postcontrast 3D intracranial vessel wall MRI (IVW) enables high-resolution rapid scanning but is associated with low SNR. We hypothesized that a deep-learning (DL) denoising algorithm applied to accelerated, blood-suppressed postcontrast IVW can yield high-quality images with reduced artifacts and higher SNR in shorter scan times.</p><p><strong>Materials and methods: </strong>Sixty-four consecutive patients underwent IVW, including conventional postcontrast 3D T1-sampling perfection with application-optimized contrasts by using different flip angle evolution (SPACE) and delay alternating with nutation for tailored excitation (DANTE) blood-suppressed and CAIPIRINHIA-accelerated (CAIPI) 3D T1-weighted TSE postcontrast sequences (DANTE-CAIPI-SPACE). DANTE-CAIPI-SPACE acquisitions were then denoised by using an unrolled deep convolutional network (DANTE-CAIPI-SPACE+DL). SPACE, DANTE-CAIPI-SPACE, and DANTE-CAIPI-SPACE+DL images were compared for overall image quality, SNR, severity of artifacts, arterial and venous suppression, and lesion assessment by using 4-point or 5-point Likert scales. Quantitative evaluation of SNR and contrast-to-noise ratio (CNR) was performed.</p><p><strong>Results: </strong>DANTE-CAIPI-SPACE+DL showed significantly reduced arterial (1 [1-1.75] versus 3 [3-4], <i>P</i> < .001) and venous flow artifacts (1 [1-2] versus 3 [3-4], <i>P</i> < .001) compared with SPACE. There was no significant difference between DANTE-CAIPI-SPACE+DL and SPACE in terms of image quality, SNR, artifact ratings, and lesion assessment. For SNR ratings, DANTE-CAIPI-SPACE+DL was significantly better compared with DANTE-CAIPI-SPACE (2 [1-2], versus 3 [2-3], <i>P</i> < .001). No statistically significant differences were found between DANTE-CAIPI-SPACE and DANTE-CAIPI-SPACE+DL for image quality, artifact, arterial blood and venous blood flow artifacts, and lesion assessment. Quantitative vessel wall SNR and CNR median values were significantly higher for DANTE-CAIPI-SPACE+DL (SNR: 9.71, CNR: 4.24) compared with DANTE-CAIPI-SPACE (SNR: 5.50, CNR: 2.64) (<i>P</i> < .001 for each), but there was no significant difference between SPACE (SNR: 10.82, CNR: 5.21) and DANTE-CAIPI-SPACE+DL.</p><p><strong>Conclusions: </strong>DL denoised postcontrast T1-weighted DANTE-CAIPI-SPACE accelerated and blood-suppressed IVW showed improved flow suppression with a shorter scan time and equivalent qualitative and quantitative SNR measures relative to conventional postcontrast IVW. It also improved SNR metrics relative to postcontrast DANTE-CAIPI-SPACE IVW. Implementing DL denoised DANTE-CAIPI-SPACE IVW has the potential to shorten protocol time while maintaining or improving the image quality of IVW.</p>\",\"PeriodicalId\":93863,\"journal\":{\"name\":\"AJNR. American journal of neuroradiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AJNR. American journal of neuroradiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3174/ajnr.A8424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:加速和血液抑制对比后三维颅内血管壁磁共振成像(IVW)可实现高分辨率快速扫描,但信噪比较低。我们假设,将深度学习(DL)去噪算法应用于加速、血液抑制对比后 IVW,可以在更短的扫描时间内获得伪影更少、信噪比更高的高质量图像:64例连续患者接受了IVW检查,包括传统的对比后三维T1取样完善序列(DANTE-CAIPI-SPACE)和CAIPIRINHIA加速三维T1加权TSE对比后序列(DANTE-CAIPI-SPACE)。然后使用未卷积深度卷积网络(DANTECAIPI-SPACE+DL)对 DANTE-CAIPI-SPACE 采集结果进行去噪处理。使用 4 点或 5 点李克特量表对 SPACE、DANTE-CAIPI-SPACE 和 DANTE-CAIPI-SPACE+DL 图像的整体图像质量、信噪比、伪影严重程度、动脉和静脉抑制以及病变评估进行比较。对信噪比和对比-噪声比(CNR)进行了定量评估:结果:DANTE-CAIPI-SPACE+DL显示动脉抑制明显降低(1 [1-1.75] vs. 3 [3-4],p结论:深度学习去噪后对比T1加权DANTE-CAIPI-SPACE加速和血液抑制IVW显示,与传统对比后IVW相比,DANTE-CAIPI-SPACE加速和血液抑制IVW改善了血流抑制,扫描时间更短,定性和定量信噪比指标相当。与对比后 DANTE-CAIPI-SPACE IVW 相比,它还改善了 SNR 指标。实施深度学习去噪的 DANTE-CAIPI-SPACE IVW 有可能缩短协议时间,同时保持或提高 IVW 的图像质量:缩写:DL=深度学习;IVW=颅内血管壁磁共振成像;SPACE=通过使用不同的翻转角演化,实现具有应用优化对比度的完美取样;DANTE=为定制激发而进行的延迟交替;CAIPI=并行成像中的可控混叠;CNR=对比度与噪声比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DANTE-CAIPI Accelerated Contrast-Enhanced 3D T1: Deep Learning-Based Image Quality Improvement for Vessel Wall MRI.

Background and purpose: Accelerated and blood-suppressed postcontrast 3D intracranial vessel wall MRI (IVW) enables high-resolution rapid scanning but is associated with low SNR. We hypothesized that a deep-learning (DL) denoising algorithm applied to accelerated, blood-suppressed postcontrast IVW can yield high-quality images with reduced artifacts and higher SNR in shorter scan times.

Materials and methods: Sixty-four consecutive patients underwent IVW, including conventional postcontrast 3D T1-sampling perfection with application-optimized contrasts by using different flip angle evolution (SPACE) and delay alternating with nutation for tailored excitation (DANTE) blood-suppressed and CAIPIRINHIA-accelerated (CAIPI) 3D T1-weighted TSE postcontrast sequences (DANTE-CAIPI-SPACE). DANTE-CAIPI-SPACE acquisitions were then denoised by using an unrolled deep convolutional network (DANTE-CAIPI-SPACE+DL). SPACE, DANTE-CAIPI-SPACE, and DANTE-CAIPI-SPACE+DL images were compared for overall image quality, SNR, severity of artifacts, arterial and venous suppression, and lesion assessment by using 4-point or 5-point Likert scales. Quantitative evaluation of SNR and contrast-to-noise ratio (CNR) was performed.

Results: DANTE-CAIPI-SPACE+DL showed significantly reduced arterial (1 [1-1.75] versus 3 [3-4], P < .001) and venous flow artifacts (1 [1-2] versus 3 [3-4], P < .001) compared with SPACE. There was no significant difference between DANTE-CAIPI-SPACE+DL and SPACE in terms of image quality, SNR, artifact ratings, and lesion assessment. For SNR ratings, DANTE-CAIPI-SPACE+DL was significantly better compared with DANTE-CAIPI-SPACE (2 [1-2], versus 3 [2-3], P < .001). No statistically significant differences were found between DANTE-CAIPI-SPACE and DANTE-CAIPI-SPACE+DL for image quality, artifact, arterial blood and venous blood flow artifacts, and lesion assessment. Quantitative vessel wall SNR and CNR median values were significantly higher for DANTE-CAIPI-SPACE+DL (SNR: 9.71, CNR: 4.24) compared with DANTE-CAIPI-SPACE (SNR: 5.50, CNR: 2.64) (P < .001 for each), but there was no significant difference between SPACE (SNR: 10.82, CNR: 5.21) and DANTE-CAIPI-SPACE+DL.

Conclusions: DL denoised postcontrast T1-weighted DANTE-CAIPI-SPACE accelerated and blood-suppressed IVW showed improved flow suppression with a shorter scan time and equivalent qualitative and quantitative SNR measures relative to conventional postcontrast IVW. It also improved SNR metrics relative to postcontrast DANTE-CAIPI-SPACE IVW. Implementing DL denoised DANTE-CAIPI-SPACE IVW has the potential to shorten protocol time while maintaining or improving the image quality of IVW.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Arterial Spin-Labeling and DSC Perfusion MR Imaging in Pediatric Brain Tumors: A Systematic Review and Meta-Analysis. Diagnostic Performance of Renal Contrast Excretion on Early-Phase CT Myelography in Spontaneous Intracranial Hypotension. Prolonged Venous Transit on Perfusion Imaging is Associated with Longer Lengths of Stay in Acute Large Vessel Occlusions. Accuracy of an nnUNet neural network for the automatic segmentation of intracranial aneurysms, their parent vessels and major cerebral arteries from magnetic resonance imaging-Time of flight (MRI-TOF). Accuracy of Financial Disclosures by Scientific Presenters/Authors at the ASNR 2024 annual meeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1