在石墨烯/WSe2 异质结构中原子级精确创建和操纵界面硒化学吸附剂

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2024-07-23 DOI:10.1103/physrevb.110.l041405
Mo-Han Zhang, Fei Gao, Aleksander Bach Lorentzen, Ya-Ning Ren, Ruo-Han Zhang, Xiao-Feng Zhou, Rui Dong, Shi-Wu Gao, Mads Brandbyge, Lin He
{"title":"在石墨烯/WSe2 异质结构中原子级精确创建和操纵界面硒化学吸附剂","authors":"Mo-Han Zhang, Fei Gao, Aleksander Bach Lorentzen, Ya-Ning Ren, Ruo-Han Zhang, Xiao-Feng Zhou, Rui Dong, Shi-Wu Gao, Mads Brandbyge, Lin He","doi":"10.1103/physrevb.110.l041405","DOIUrl":null,"url":null,"abstract":"It has long been an ultimate goal to introduce chemical doping at the atomic level to precisely tune properties of materials. Two-dimensional materials have a natural advantage due to their high surface to volume ratio, but achieving this goal experimentally remains a huge challenge. Here, we demonstrate the ability to introduce chemical doping in graphene with atomic-level precision by controlling chemical adsorption of individual Se atoms, which are extracted from the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>WSe</mi><mn>2</mn></msub></math> that is underneath, at the interface of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>graphene</mtext><mo>/</mo><msub><mi>WSe</mi><mn>2</mn></msub></math> heterostructures. Our scanning tunneling microscopy (STM) measurements, combined with first-principles calculations, reveal that individual Se atoms can chemisorb on three possible positions in graphene, which generate distinct pseudospin-mediated atomic-scale vortices in graphene. Furthermore, the chemisorbed positions of individual Se atoms can be manipulated by the STM tip, which enables us to achieve atomic-scale control of quantum interference of the pseudospin-mediated vortices in graphene. This result offers the promise of controlling properties of materials with atomic-level precision through chemical doping.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-level precision creation and manipulation of interfacial Se chemisorbates in graphene/WSe2 heterostructures\",\"authors\":\"Mo-Han Zhang, Fei Gao, Aleksander Bach Lorentzen, Ya-Ning Ren, Ruo-Han Zhang, Xiao-Feng Zhou, Rui Dong, Shi-Wu Gao, Mads Brandbyge, Lin He\",\"doi\":\"10.1103/physrevb.110.l041405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has long been an ultimate goal to introduce chemical doping at the atomic level to precisely tune properties of materials. Two-dimensional materials have a natural advantage due to their high surface to volume ratio, but achieving this goal experimentally remains a huge challenge. Here, we demonstrate the ability to introduce chemical doping in graphene with atomic-level precision by controlling chemical adsorption of individual Se atoms, which are extracted from the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>WSe</mi><mn>2</mn></msub></math> that is underneath, at the interface of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mtext>graphene</mtext><mo>/</mo><msub><mi>WSe</mi><mn>2</mn></msub></math> heterostructures. Our scanning tunneling microscopy (STM) measurements, combined with first-principles calculations, reveal that individual Se atoms can chemisorb on three possible positions in graphene, which generate distinct pseudospin-mediated atomic-scale vortices in graphene. Furthermore, the chemisorbed positions of individual Se atoms can be manipulated by the STM tip, which enables us to achieve atomic-scale control of quantum interference of the pseudospin-mediated vortices in graphene. This result offers the promise of controlling properties of materials with atomic-level precision through chemical doping.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.l041405\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.l041405","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,在原子层面引入化学掺杂以精确调节材料特性一直是我们的终极目标。二维材料具有高表面体积比的天然优势,但要在实验中实现这一目标仍是一个巨大的挑战。在这里,我们展示了通过控制石墨烯/WSe2 异质结构界面上单个 Se 原子的化学吸附,在石墨烯中引入原子级精度的化学掺杂的能力。我们的扫描隧道显微镜(STM)测量结果与第一原理计算相结合,揭示了单个硒原子可以在石墨烯的三个可能位置上发生化学吸附,从而在石墨烯中产生不同的伪ospin 介导的原子尺度漩涡。此外,单个硒原子的化学吸附位置可以通过 STM 针尖进行操纵,这使我们能够实现对石墨烯中伪斯宾介导的漩涡的原子尺度量子干涉控制。这一结果为通过化学掺杂以原子级精度控制材料特性带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic-level precision creation and manipulation of interfacial Se chemisorbates in graphene/WSe2 heterostructures
It has long been an ultimate goal to introduce chemical doping at the atomic level to precisely tune properties of materials. Two-dimensional materials have a natural advantage due to their high surface to volume ratio, but achieving this goal experimentally remains a huge challenge. Here, we demonstrate the ability to introduce chemical doping in graphene with atomic-level precision by controlling chemical adsorption of individual Se atoms, which are extracted from the WSe2 that is underneath, at the interface of the graphene/WSe2 heterostructures. Our scanning tunneling microscopy (STM) measurements, combined with first-principles calculations, reveal that individual Se atoms can chemisorb on three possible positions in graphene, which generate distinct pseudospin-mediated atomic-scale vortices in graphene. Furthermore, the chemisorbed positions of individual Se atoms can be manipulated by the STM tip, which enables us to achieve atomic-scale control of quantum interference of the pseudospin-mediated vortices in graphene. This result offers the promise of controlling properties of materials with atomic-level precision through chemical doping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Disordered Landau levels of single-cone massless Dirac fermions with broken particle-hole symmetry Locality, correlations, information, and non-Hermitian quantum systems Insights into the bonding properties and magnetism of the Mn-B system with a physically constrained neural network functional Electronic band structure of high-symmetry homobilayers of transition metal dichalcogenides Uncovering gauge-dependent critical order-parameter correlations by a stochastic gauge fixing at O(N)* and Ising* continuous transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1