André Morin, Brett M Culbert, Hossein Mehdi, Sigal Balshine, Andy J Turko
{"title":"群居鱼类社会交往对新陈代谢的影响与状态有关。","authors":"André Morin, Brett M Culbert, Hossein Mehdi, Sigal Balshine, Andy J Turko","doi":"10.1098/rsbl.2024.0056","DOIUrl":null,"url":null,"abstract":"<p><p>Social interactions can sometimes be a source of stress, but social companions can also ameliorate and buffer against stress. Stress and metabolism are closely linked, but the degree to which social companions modulate metabolic responses during stressful situations-and whether such effects differ depending on social rank-is poorly understood. To investigate this question, we studied <i>Neolamprologus pulcher</i>, a group-living cichlid fish endemic to Lake Tanganyika and measured the metabolic responses of dominant and subordinate individuals when they were either visible or concealed from one another. When individuals could see each other, subordinates had lower maximum metabolic rates and tended to take longer to recover following an exhaustive chase compared with dominants. In contrast, metabolic responses of dominants and subordinates did not differ when individuals could not see one another. These findings suggest that the presence of a dominant individual has negative metabolic consequences for subordinates, even in stable social groups with strong prosocial relationships.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267398/pdf/","citationCount":"0","resultStr":"{\"title\":\"Status-dependent metabolic effects of social interactions in a group-living fish.\",\"authors\":\"André Morin, Brett M Culbert, Hossein Mehdi, Sigal Balshine, Andy J Turko\",\"doi\":\"10.1098/rsbl.2024.0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Social interactions can sometimes be a source of stress, but social companions can also ameliorate and buffer against stress. Stress and metabolism are closely linked, but the degree to which social companions modulate metabolic responses during stressful situations-and whether such effects differ depending on social rank-is poorly understood. To investigate this question, we studied <i>Neolamprologus pulcher</i>, a group-living cichlid fish endemic to Lake Tanganyika and measured the metabolic responses of dominant and subordinate individuals when they were either visible or concealed from one another. When individuals could see each other, subordinates had lower maximum metabolic rates and tended to take longer to recover following an exhaustive chase compared with dominants. In contrast, metabolic responses of dominants and subordinates did not differ when individuals could not see one another. These findings suggest that the presence of a dominant individual has negative metabolic consequences for subordinates, even in stable social groups with strong prosocial relationships.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267398/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsbl.2024.0056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsbl.2024.0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Status-dependent metabolic effects of social interactions in a group-living fish.
Social interactions can sometimes be a source of stress, but social companions can also ameliorate and buffer against stress. Stress and metabolism are closely linked, but the degree to which social companions modulate metabolic responses during stressful situations-and whether such effects differ depending on social rank-is poorly understood. To investigate this question, we studied Neolamprologus pulcher, a group-living cichlid fish endemic to Lake Tanganyika and measured the metabolic responses of dominant and subordinate individuals when they were either visible or concealed from one another. When individuals could see each other, subordinates had lower maximum metabolic rates and tended to take longer to recover following an exhaustive chase compared with dominants. In contrast, metabolic responses of dominants and subordinates did not differ when individuals could not see one another. These findings suggest that the presence of a dominant individual has negative metabolic consequences for subordinates, even in stable social groups with strong prosocial relationships.