IF 2.9 3区 生物学Q3 BIOCHEMISTRY & MOLECULAR BIOLOGYBMB ReportsPub Date : 2024-10-01
Hyeryung Yoon, Chaemyeong Lim, Bo Lyu, Qisheng Song, So-Yon Park, Kiyoon Kang, Sung-Hwan Cho, Nam-Chon Paek
{"title":"水稻CHD3/Mi-2染色质重塑因子RFS通过调节辅助素相关基因NAL1和OsPIN1的转录来调控血管发育和根的形成。","authors":"Hyeryung Yoon, Chaemyeong Lim, Bo Lyu, Qisheng Song, So-Yon Park, Kiyoon Kang, Sung-Hwan Cho, Nam-Chon Paek","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The vascular system in plants facilitates long-distance transportation of water and nutrients through the xylem and phloem, while also providing mechanical support for vertical growth. Although many genes that regulate vascular development in rice have been identified, the mechanism by which epigenetic regulators control vascular development remains unclear. This study found that Rolled Fine Striped (RFS), a Chromodomain Helicase DNA-binding 3 (CHD3)/Mi-2 subfamily protein, regulates vascular development in rice by affecting the initiation and development of primordia. The rfs mutant was found to affect auxin-related genes, as revealed by RNA sequencing and reverse transcription-quantitative PCR analysis. The transcript levels of OsPIN1 and NAL1 genes were downregulated in rfs mutant, compared to the wild-type plant. The chromatin immunoprecipitation assays showed lower levels of H3K4me3 in the OsPIN1a and NAL1 genes in rfs mutant. Furthermore, exogenous auxin treatment partially rescued the reduced adventitious root vascular development in rfs mutant. Subsequently, exogenous treatments with auxin or an auxin-transport inhibitor revealed that the expression of OsPIN1a and NAL1 is mainly affected by auxin. These results provide strong evidence that RFS plays an important role in vascular development and root formation through the auxin signaling pathway in rice. [BMB Reports 2024; 57(10): 441-446].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524826/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rice CHD3/Mi-2 chromatin remodeling factor RFS regulates vascular development and root formation by modulating the transcription of auxin-related genes NAL1 and OsPIN1.\",\"authors\":\"Hyeryung Yoon, Chaemyeong Lim, Bo Lyu, Qisheng Song, So-Yon Park, Kiyoon Kang, Sung-Hwan Cho, Nam-Chon Paek\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The vascular system in plants facilitates long-distance transportation of water and nutrients through the xylem and phloem, while also providing mechanical support for vertical growth. Although many genes that regulate vascular development in rice have been identified, the mechanism by which epigenetic regulators control vascular development remains unclear. This study found that Rolled Fine Striped (RFS), a Chromodomain Helicase DNA-binding 3 (CHD3)/Mi-2 subfamily protein, regulates vascular development in rice by affecting the initiation and development of primordia. The rfs mutant was found to affect auxin-related genes, as revealed by RNA sequencing and reverse transcription-quantitative PCR analysis. The transcript levels of OsPIN1 and NAL1 genes were downregulated in rfs mutant, compared to the wild-type plant. The chromatin immunoprecipitation assays showed lower levels of H3K4me3 in the OsPIN1a and NAL1 genes in rfs mutant. Furthermore, exogenous auxin treatment partially rescued the reduced adventitious root vascular development in rfs mutant. Subsequently, exogenous treatments with auxin or an auxin-transport inhibitor revealed that the expression of OsPIN1a and NAL1 is mainly affected by auxin. These results provide strong evidence that RFS plays an important role in vascular development and root formation through the auxin signaling pathway in rice. [BMB Reports 2024; 57(10): 441-446].</p>\",\"PeriodicalId\":9010,\"journal\":{\"name\":\"BMB Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524826/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMB Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMB Reports","FirstCategoryId":"99","ListUrlMain":"","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Rice CHD3/Mi-2 chromatin remodeling factor RFS regulates vascular development and root formation by modulating the transcription of auxin-related genes NAL1 and OsPIN1.
The vascular system in plants facilitates long-distance transportation of water and nutrients through the xylem and phloem, while also providing mechanical support for vertical growth. Although many genes that regulate vascular development in rice have been identified, the mechanism by which epigenetic regulators control vascular development remains unclear. This study found that Rolled Fine Striped (RFS), a Chromodomain Helicase DNA-binding 3 (CHD3)/Mi-2 subfamily protein, regulates vascular development in rice by affecting the initiation and development of primordia. The rfs mutant was found to affect auxin-related genes, as revealed by RNA sequencing and reverse transcription-quantitative PCR analysis. The transcript levels of OsPIN1 and NAL1 genes were downregulated in rfs mutant, compared to the wild-type plant. The chromatin immunoprecipitation assays showed lower levels of H3K4me3 in the OsPIN1a and NAL1 genes in rfs mutant. Furthermore, exogenous auxin treatment partially rescued the reduced adventitious root vascular development in rfs mutant. Subsequently, exogenous treatments with auxin or an auxin-transport inhibitor revealed that the expression of OsPIN1a and NAL1 is mainly affected by auxin. These results provide strong evidence that RFS plays an important role in vascular development and root formation through the auxin signaling pathway in rice. [BMB Reports 2024; 57(10): 441-446].
期刊介绍:
The BMB Reports (BMB Rep, established in 1968) is published at the end of every month by Korean Society for Biochemistry and Molecular Biology. Copyright is reserved by the Society. The journal publishes short articles and mini reviews. We expect that the BMB Reports will deliver the new scientific findings and knowledge to our readers in fast and timely manner.