{"title":"FEFA:频率增强型多模态磁共振成像重构与深度特征对齐。","authors":"Xuanmin Chen;Liyan Ma;Shihui Ying;Dinggang Shen;Tieyong Zeng","doi":"10.1109/JBHI.2024.3432139","DOIUrl":null,"url":null,"abstract":"Integrating complementary information from multiple magnetic resonance imaging (MRI) modalities is often necessary to make accurate and reliable diagnostic decisions. However, the different acquisition speeds of these modalities mean that obtaining information can be time consuming and require significant effort. Reference-based MRI reconstruction aims to accelerate slower, under-sampled imaging modalities, such as T2-modality, by utilizing redundant information from faster, fully sampled modalities, such as T1-modality. Unfortunately, spatial misalignment between different modalities often negatively impacts the final results. To address this issue, we propose FEFA, which consists of cascading FEFA blocks. The FEFA block first aligns and fuses the two modalities at the feature level. The combined features are then filtered in the frequency domain to enhance the important features while simultaneously suppressing the less essential ones, thereby ensuring accurate reconstruction. Furthermore, we emphasize the advantages of combining the reconstruction results from multiple cascaded blocks, which also contributes to stabilizing the training process. Compared to existing registration-then-reconstruction and cross-attention-based approaches, our method is end-to-end trainable without requiring additional supervision, extensive parameters, or heavy computation. Experiments on the public fastMRI, IXI and in-house datasets demonstrate that our approach is effective across various under-sampling patterns and ratios.","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FEFA: Frequency Enhanced Multi-Modal MRI Reconstruction With Deep Feature Alignment\",\"authors\":\"Xuanmin Chen;Liyan Ma;Shihui Ying;Dinggang Shen;Tieyong Zeng\",\"doi\":\"10.1109/JBHI.2024.3432139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating complementary information from multiple magnetic resonance imaging (MRI) modalities is often necessary to make accurate and reliable diagnostic decisions. However, the different acquisition speeds of these modalities mean that obtaining information can be time consuming and require significant effort. Reference-based MRI reconstruction aims to accelerate slower, under-sampled imaging modalities, such as T2-modality, by utilizing redundant information from faster, fully sampled modalities, such as T1-modality. Unfortunately, spatial misalignment between different modalities often negatively impacts the final results. To address this issue, we propose FEFA, which consists of cascading FEFA blocks. The FEFA block first aligns and fuses the two modalities at the feature level. The combined features are then filtered in the frequency domain to enhance the important features while simultaneously suppressing the less essential ones, thereby ensuring accurate reconstruction. Furthermore, we emphasize the advantages of combining the reconstruction results from multiple cascaded blocks, which also contributes to stabilizing the training process. Compared to existing registration-then-reconstruction and cross-attention-based approaches, our method is end-to-end trainable without requiring additional supervision, extensive parameters, or heavy computation. Experiments on the public fastMRI, IXI and in-house datasets demonstrate that our approach is effective across various under-sampling patterns and ratios.\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10607849/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10607849/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
FEFA: Frequency Enhanced Multi-Modal MRI Reconstruction With Deep Feature Alignment
Integrating complementary information from multiple magnetic resonance imaging (MRI) modalities is often necessary to make accurate and reliable diagnostic decisions. However, the different acquisition speeds of these modalities mean that obtaining information can be time consuming and require significant effort. Reference-based MRI reconstruction aims to accelerate slower, under-sampled imaging modalities, such as T2-modality, by utilizing redundant information from faster, fully sampled modalities, such as T1-modality. Unfortunately, spatial misalignment between different modalities often negatively impacts the final results. To address this issue, we propose FEFA, which consists of cascading FEFA blocks. The FEFA block first aligns and fuses the two modalities at the feature level. The combined features are then filtered in the frequency domain to enhance the important features while simultaneously suppressing the less essential ones, thereby ensuring accurate reconstruction. Furthermore, we emphasize the advantages of combining the reconstruction results from multiple cascaded blocks, which also contributes to stabilizing the training process. Compared to existing registration-then-reconstruction and cross-attention-based approaches, our method is end-to-end trainable without requiring additional supervision, extensive parameters, or heavy computation. Experiments on the public fastMRI, IXI and in-house datasets demonstrate that our approach is effective across various under-sampling patterns and ratios.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.