{"title":"HnRNPA1 可防止内皮细胞向间质转化诱导的血管内皮细胞活化和静脉移植物的新内膜增生","authors":"Haoliang Liu, Chaoqun Wang, Rui Wang, Yi Zhang, Bohao Jian, Zhuoming Zhou, Zhongkai Wu, Mengya Liang","doi":"10.1007/s12265-024-10545-3","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial-to-mesenchymal transition (EndoMT) is associated with neointimal hyperplasia and vein graft failure, and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) has emerged as a major modulator of EMT. We aimed to investigate the functional consequence of EndoMT in neointimal hyperplasia and the precise role of hnRNPA1 in the regulation of EndoMT and neointimal hyperplasia. We investigated the spatial and temporal distribution characteristics of EndoMT cells in a mouse model of vein graft transplantation. In vitro, we studied the interaction between EndoMT cells and VSMCs, and the underlying mechanism was investigated by cytokine antibody assays. In cultured HUVECs, we studied the effect of hnRNPA1 on EndoMT and the cellular interactions by using siRNA-mediated knockdown and adenovirus-mediated overexpression. We further investigated the role of hnRNPA1 in EndoMT and neointimal hyperplasia in vivo with an AAV-mediated EC-specific hnRNPA1 overexpression murine model. We demonstrated the presence of EndoMT cells during the initial stage of neointimal formation, and that EndoMT cells promoted the proliferation and migration of VSMCs in vitro. Mechanistic studies revealed that EndoMT cells express and secrete a higher level of PDGF-B. Furthermore, we found a regulatory role for hnRNPA1 in EndoMT in vitro and in vivo. Similarly, we found that hnRNPA1 overexpression in ECs reduced the expression and secretion of PDGF-B during EndoMT, effectively inhibiting EndoMT cell-mediated activation of VSMCs in vitro and neointimal formation in vivo. Taken together, these findings indicate that EndoMT cells can activate VSMCs through a paracrine mechanism mediated by hnRNPA1 and lead to neointimal hyperplasia.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"1400-1414"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HnRNPA1 Prevents Endothelial-to-mesenchymal Transition-induced VSMC Activation and Neointimal Hyperplasia in Vein Grafts.\",\"authors\":\"Haoliang Liu, Chaoqun Wang, Rui Wang, Yi Zhang, Bohao Jian, Zhuoming Zhou, Zhongkai Wu, Mengya Liang\",\"doi\":\"10.1007/s12265-024-10545-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endothelial-to-mesenchymal transition (EndoMT) is associated with neointimal hyperplasia and vein graft failure, and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) has emerged as a major modulator of EMT. We aimed to investigate the functional consequence of EndoMT in neointimal hyperplasia and the precise role of hnRNPA1 in the regulation of EndoMT and neointimal hyperplasia. We investigated the spatial and temporal distribution characteristics of EndoMT cells in a mouse model of vein graft transplantation. In vitro, we studied the interaction between EndoMT cells and VSMCs, and the underlying mechanism was investigated by cytokine antibody assays. In cultured HUVECs, we studied the effect of hnRNPA1 on EndoMT and the cellular interactions by using siRNA-mediated knockdown and adenovirus-mediated overexpression. We further investigated the role of hnRNPA1 in EndoMT and neointimal hyperplasia in vivo with an AAV-mediated EC-specific hnRNPA1 overexpression murine model. We demonstrated the presence of EndoMT cells during the initial stage of neointimal formation, and that EndoMT cells promoted the proliferation and migration of VSMCs in vitro. Mechanistic studies revealed that EndoMT cells express and secrete a higher level of PDGF-B. Furthermore, we found a regulatory role for hnRNPA1 in EndoMT in vitro and in vivo. Similarly, we found that hnRNPA1 overexpression in ECs reduced the expression and secretion of PDGF-B during EndoMT, effectively inhibiting EndoMT cell-mediated activation of VSMCs in vitro and neointimal formation in vivo. Taken together, these findings indicate that EndoMT cells can activate VSMCs through a paracrine mechanism mediated by hnRNPA1 and lead to neointimal hyperplasia.</p>\",\"PeriodicalId\":15224,\"journal\":{\"name\":\"Journal of Cardiovascular Translational Research\",\"volume\":\" \",\"pages\":\"1400-1414\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12265-024-10545-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12265-024-10545-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
HnRNPA1 Prevents Endothelial-to-mesenchymal Transition-induced VSMC Activation and Neointimal Hyperplasia in Vein Grafts.
Endothelial-to-mesenchymal transition (EndoMT) is associated with neointimal hyperplasia and vein graft failure, and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) has emerged as a major modulator of EMT. We aimed to investigate the functional consequence of EndoMT in neointimal hyperplasia and the precise role of hnRNPA1 in the regulation of EndoMT and neointimal hyperplasia. We investigated the spatial and temporal distribution characteristics of EndoMT cells in a mouse model of vein graft transplantation. In vitro, we studied the interaction between EndoMT cells and VSMCs, and the underlying mechanism was investigated by cytokine antibody assays. In cultured HUVECs, we studied the effect of hnRNPA1 on EndoMT and the cellular interactions by using siRNA-mediated knockdown and adenovirus-mediated overexpression. We further investigated the role of hnRNPA1 in EndoMT and neointimal hyperplasia in vivo with an AAV-mediated EC-specific hnRNPA1 overexpression murine model. We demonstrated the presence of EndoMT cells during the initial stage of neointimal formation, and that EndoMT cells promoted the proliferation and migration of VSMCs in vitro. Mechanistic studies revealed that EndoMT cells express and secrete a higher level of PDGF-B. Furthermore, we found a regulatory role for hnRNPA1 in EndoMT in vitro and in vivo. Similarly, we found that hnRNPA1 overexpression in ECs reduced the expression and secretion of PDGF-B during EndoMT, effectively inhibiting EndoMT cell-mediated activation of VSMCs in vitro and neointimal formation in vivo. Taken together, these findings indicate that EndoMT cells can activate VSMCs through a paracrine mechanism mediated by hnRNPA1 and lead to neointimal hyperplasia.
期刊介绍:
Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research.
JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials.
JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.