紫外线照射有益于高血压大鼠左心室肥厚和心肌细胞线粒体形态。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Photochemistry and Photobiology Pub Date : 2024-07-23 DOI:10.1111/php.14002
Hiroki Shibata, Akiko Noda, Yuji Nishizawa, Atsuki Ito, Takahiro Okumura, Katsunori Hashimoto, Kozue Takeda, Kimiaki Katanosaka, Fumihiko Yasuma, Shiyong Wu
{"title":"紫外线照射有益于高血压大鼠左心室肥厚和心肌细胞线粒体形态。","authors":"Hiroki Shibata, Akiko Noda, Yuji Nishizawa, Atsuki Ito, Takahiro Okumura, Katsunori Hashimoto, Kozue Takeda, Kimiaki Katanosaka, Fumihiko Yasuma, Shiyong Wu","doi":"10.1111/php.14002","DOIUrl":null,"url":null,"abstract":"<p><p>Insufficient exposure to sunlight increases the risk of cardiovascular diseases. Hypertensive left ventricular (LV) hypertrophy exacerbates the risks of myocardial ischemia, ventricular arrhythmias, sudden cardiac death, and heart failure. This study aimed to determine the effects of ultraviolet (UV) irradiation on LV hypertrophy and mitochondrial morphology. Eighteen 7-week-old Dahl salt-sensitive (Dahl S) rats were categorized into three groups (n = 6 each) and fed sodium chloride (NaCl) diets, as follows: UV-irradiated [UVB+A (+), 8% NaCl], non-UV-irradiated [UV (-), 8% NaCl], and control [UV (-), 0.3% NaCl]. UV irradiation was administered at a low intensity of 100 mJ/cm<sup>2</sup> for 6 days per week. Echocardiography and mitochondrial analyses were performed to evaluate LV hypertrophy and cardiomyocytes, and skin tissues were stained with hematoxylin and eosin to assess the pathological abnormalities at 12 weeks of age. LV mass was significantly reduced in the UVB+A (+) and control groups compared to that in the UV (-) group. Mitochondrial structural abnormalities in cardiomyocytes were observed only in the UV (-) group, but not in the UVB+A (+) or control group. Pathological skin abnormalities were not observed in any of the three groups. These findings suggest the potential benefits of UV irradiation in hypertensive models.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultraviolet irradiation benefits left ventricular hypertrophy and mitochondrial morphology of cardiomyocytes in hypertensive rats.\",\"authors\":\"Hiroki Shibata, Akiko Noda, Yuji Nishizawa, Atsuki Ito, Takahiro Okumura, Katsunori Hashimoto, Kozue Takeda, Kimiaki Katanosaka, Fumihiko Yasuma, Shiyong Wu\",\"doi\":\"10.1111/php.14002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insufficient exposure to sunlight increases the risk of cardiovascular diseases. Hypertensive left ventricular (LV) hypertrophy exacerbates the risks of myocardial ischemia, ventricular arrhythmias, sudden cardiac death, and heart failure. This study aimed to determine the effects of ultraviolet (UV) irradiation on LV hypertrophy and mitochondrial morphology. Eighteen 7-week-old Dahl salt-sensitive (Dahl S) rats were categorized into three groups (n = 6 each) and fed sodium chloride (NaCl) diets, as follows: UV-irradiated [UVB+A (+), 8% NaCl], non-UV-irradiated [UV (-), 8% NaCl], and control [UV (-), 0.3% NaCl]. UV irradiation was administered at a low intensity of 100 mJ/cm<sup>2</sup> for 6 days per week. Echocardiography and mitochondrial analyses were performed to evaluate LV hypertrophy and cardiomyocytes, and skin tissues were stained with hematoxylin and eosin to assess the pathological abnormalities at 12 weeks of age. LV mass was significantly reduced in the UVB+A (+) and control groups compared to that in the UV (-) group. Mitochondrial structural abnormalities in cardiomyocytes were observed only in the UV (-) group, but not in the UVB+A (+) or control group. Pathological skin abnormalities were not observed in any of the three groups. These findings suggest the potential benefits of UV irradiation in hypertensive models.</p>\",\"PeriodicalId\":20133,\"journal\":{\"name\":\"Photochemistry and Photobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemistry and Photobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/php.14002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.14002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阳光照射不足会增加罹患心血管疾病的风险。高血压左心室肥厚会加剧心肌缺血、室性心律失常、心脏性猝死和心力衰竭的风险。本研究旨在确定紫外线(UV)照射对左心室肥厚和线粒体形态的影响。将 18 只 7 周大的 Dahl 盐敏感(Dahl S)大鼠分为三组(每组 6 只),分别喂食氯化钠(NaCl)饮食:紫外线照射组[UVB+A (+), 8% NaCl]、非紫外线照射组[UV (-), 8% NaCl]和对照组[UV (-), 0.3% NaCl]。紫外线照射强度为 100 mJ/cm2,每周 6 天。12周龄时,进行超声心动图和线粒体分析以评估左心室肥厚和心肌细胞,并用苏木精和伊红染色皮肤组织以评估病理异常。与紫外线(-)组相比,UVB+A(+)组和对照组的左心室质量明显降低。仅在紫外线(-)组中观察到心肌细胞线粒体结构异常,而在UVB+A(+)组或对照组中未观察到。三组中均未观察到病理性皮肤异常。这些研究结果表明,紫外线照射对高血压模型有潜在的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultraviolet irradiation benefits left ventricular hypertrophy and mitochondrial morphology of cardiomyocytes in hypertensive rats.

Insufficient exposure to sunlight increases the risk of cardiovascular diseases. Hypertensive left ventricular (LV) hypertrophy exacerbates the risks of myocardial ischemia, ventricular arrhythmias, sudden cardiac death, and heart failure. This study aimed to determine the effects of ultraviolet (UV) irradiation on LV hypertrophy and mitochondrial morphology. Eighteen 7-week-old Dahl salt-sensitive (Dahl S) rats were categorized into three groups (n = 6 each) and fed sodium chloride (NaCl) diets, as follows: UV-irradiated [UVB+A (+), 8% NaCl], non-UV-irradiated [UV (-), 8% NaCl], and control [UV (-), 0.3% NaCl]. UV irradiation was administered at a low intensity of 100 mJ/cm2 for 6 days per week. Echocardiography and mitochondrial analyses were performed to evaluate LV hypertrophy and cardiomyocytes, and skin tissues were stained with hematoxylin and eosin to assess the pathological abnormalities at 12 weeks of age. LV mass was significantly reduced in the UVB+A (+) and control groups compared to that in the UV (-) group. Mitochondrial structural abnormalities in cardiomyocytes were observed only in the UV (-) group, but not in the UVB+A (+) or control group. Pathological skin abnormalities were not observed in any of the three groups. These findings suggest the potential benefits of UV irradiation in hypertensive models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photochemistry and Photobiology
Photochemistry and Photobiology 生物-生化与分子生物学
CiteScore
6.70
自引率
12.10%
发文量
171
审稿时长
2.7 months
期刊介绍: Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.
期刊最新文献
Performance of chatbots in queries concerning fundamental concepts in photochemistry. Enhancement of the angiogenic differentiation in the periodontal ligament stem cells using fibroblast growth factor 2 and photobiomodulation: An in vitro investigation. Extending the acute skin response spectrum to include the far-UVC. Inhibition sensitivity of in vitro firefly bioluminescence quantum yields to Zn2+ and Cd2+ concentrations in aqueous solutions. Ultraviolet radiation inhibits mitochondrial bioenergetics activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1