Filippo Pesapane, Renato Cuocolo, Francesco Sardanelli
{"title":"毕加索对计算机科学的怀疑论与生成式人工智能的曙光:答案之后的问题,让 \"机器在环中\"。","authors":"Filippo Pesapane, Renato Cuocolo, Francesco Sardanelli","doi":"10.1186/s41747-024-00485-7","DOIUrl":null,"url":null,"abstract":"<p><p>Starting from Picasso's quote (\"Computers are useless. They can only give you answers\"), we discuss the introduction of generative artificial intelligence (AI), including generative adversarial networks (GANs) and transformer-based architectures such as large language models (LLMs) in radiology, where their potential in reporting, image synthesis, and analysis is notable. However, the need for improvements, evaluations, and regulations prior to clinical use is also clear. Integration of LLMs into clinical workflow needs cautiousness, to avoid or at least mitigate risks associated with false diagnostic suggestions. We highlight challenges in synthetic image generation, inherent biases in AI models, and privacy concerns, stressing the importance of diverse training datasets and robust data privacy measures. We examine the regulatory landscape, including the 2023 Executive Order on AI in the United States and the 2024 AI Act in the European Union, which set standards for AI applications in healthcare. This manuscript contributes to the field by emphasizing the necessity of maintaining the human element in medical procedures while leveraging generative AI, advocating for a \"machines-in-the-loop\" approach.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"81"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269548/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Picasso's skepticism on computer science and the dawn of generative AI: questions after the answers to keep \\\"machines-in-the-loop\\\".\",\"authors\":\"Filippo Pesapane, Renato Cuocolo, Francesco Sardanelli\",\"doi\":\"10.1186/s41747-024-00485-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Starting from Picasso's quote (\\\"Computers are useless. They can only give you answers\\\"), we discuss the introduction of generative artificial intelligence (AI), including generative adversarial networks (GANs) and transformer-based architectures such as large language models (LLMs) in radiology, where their potential in reporting, image synthesis, and analysis is notable. However, the need for improvements, evaluations, and regulations prior to clinical use is also clear. Integration of LLMs into clinical workflow needs cautiousness, to avoid or at least mitigate risks associated with false diagnostic suggestions. We highlight challenges in synthetic image generation, inherent biases in AI models, and privacy concerns, stressing the importance of diverse training datasets and robust data privacy measures. We examine the regulatory landscape, including the 2023 Executive Order on AI in the United States and the 2024 AI Act in the European Union, which set standards for AI applications in healthcare. This manuscript contributes to the field by emphasizing the necessity of maintaining the human element in medical procedures while leveraging generative AI, advocating for a \\\"machines-in-the-loop\\\" approach.</p>\",\"PeriodicalId\":36926,\"journal\":{\"name\":\"European Radiology Experimental\",\"volume\":\"8 1\",\"pages\":\"81\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269548/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology Experimental\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41747-024-00485-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00485-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
The Picasso's skepticism on computer science and the dawn of generative AI: questions after the answers to keep "machines-in-the-loop".
Starting from Picasso's quote ("Computers are useless. They can only give you answers"), we discuss the introduction of generative artificial intelligence (AI), including generative adversarial networks (GANs) and transformer-based architectures such as large language models (LLMs) in radiology, where their potential in reporting, image synthesis, and analysis is notable. However, the need for improvements, evaluations, and regulations prior to clinical use is also clear. Integration of LLMs into clinical workflow needs cautiousness, to avoid or at least mitigate risks associated with false diagnostic suggestions. We highlight challenges in synthetic image generation, inherent biases in AI models, and privacy concerns, stressing the importance of diverse training datasets and robust data privacy measures. We examine the regulatory landscape, including the 2023 Executive Order on AI in the United States and the 2024 AI Act in the European Union, which set standards for AI applications in healthcare. This manuscript contributes to the field by emphasizing the necessity of maintaining the human element in medical procedures while leveraging generative AI, advocating for a "machines-in-the-loop" approach.