靶向 SNHG1 的纳米工程治疗策略减轻小胶质细胞缺血再灌注损伤对缺氧缺血性脑病的影响

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS SLAS Technology Pub Date : 2024-08-01 DOI:10.1016/j.slast.2024.100167
Li Bao , Mingzhi Chen , Biao Dai , Yong Lei , Dani Qin , Mengke Cheng , Wei Song , Wenxia He , Bingyu Chen , Huiping Shen
{"title":"靶向 SNHG1 的纳米工程治疗策略减轻小胶质细胞缺血再灌注损伤对缺氧缺血性脑病的影响","authors":"Li Bao ,&nbsp;Mingzhi Chen ,&nbsp;Biao Dai ,&nbsp;Yong Lei ,&nbsp;Dani Qin ,&nbsp;Mengke Cheng ,&nbsp;Wei Song ,&nbsp;Wenxia He ,&nbsp;Bingyu Chen ,&nbsp;Huiping Shen","doi":"10.1016/j.slast.2024.100167","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this work is to investigate the function of SNHG1, a long non-coding RNA implicated in disease progression, apoptosis, and proliferation, in order to solve the problem of hypoxic-ischemic encephalopathy (HIE) in newborn care. We investigated the impact of overexpressing SNHG1 on hypoxia-induced apoptosis and studied its expression in BV2 microglial cells under hypoxic circumstances. As a result of modifying YY1 expression, SNHG1′s overexpression prevents apoptosis, as our data demonstrate that it is considerably downregulated under hypoxia. We demonstrate that SNHG1 might potentially reduce microglial ischemia-reperfusion damage by using sophisticated nanoengineering drug delivery technologies to target it. This provides encouraging information for the therapy of ischemic epilepsy.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"29 4","pages":"Article 100167"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000499/pdfft?md5=b6499196650522605674934431ec7f3b&pid=1-s2.0-S2472630324000499-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanoengineered therapeutic strategies targeting SNHG1 for mitigating microglial ischemia-reperfusion injury implications for hypoxic-ischemic encephalopathy\",\"authors\":\"Li Bao ,&nbsp;Mingzhi Chen ,&nbsp;Biao Dai ,&nbsp;Yong Lei ,&nbsp;Dani Qin ,&nbsp;Mengke Cheng ,&nbsp;Wei Song ,&nbsp;Wenxia He ,&nbsp;Bingyu Chen ,&nbsp;Huiping Shen\",\"doi\":\"10.1016/j.slast.2024.100167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this work is to investigate the function of SNHG1, a long non-coding RNA implicated in disease progression, apoptosis, and proliferation, in order to solve the problem of hypoxic-ischemic encephalopathy (HIE) in newborn care. We investigated the impact of overexpressing SNHG1 on hypoxia-induced apoptosis and studied its expression in BV2 microglial cells under hypoxic circumstances. As a result of modifying YY1 expression, SNHG1′s overexpression prevents apoptosis, as our data demonstrate that it is considerably downregulated under hypoxia. We demonstrate that SNHG1 might potentially reduce microglial ischemia-reperfusion damage by using sophisticated nanoengineering drug delivery technologies to target it. This provides encouraging information for the therapy of ischemic epilepsy.</p></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":\"29 4\",\"pages\":\"Article 100167\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000499/pdfft?md5=b6499196650522605674934431ec7f3b&pid=1-s2.0-S2472630324000499-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000499\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324000499","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

SNHG1是一种与疾病进展、细胞凋亡和增殖有关的长非编码RNA,本研究旨在研究SNHG1的功能,以解决新生儿缺氧缺血性脑病(HIE)的治疗问题。我们研究了过表达 SNHG1 对缺氧诱导的细胞凋亡的影响,并研究了缺氧环境下 SNHG1 在 BV2 小胶质细胞中的表达。由于改变了 YY1 的表达,SNHG1 的过表达可防止细胞凋亡,因为我们的数据表明,在缺氧条件下,SNHG1 的表达会显著下调。我们证明,利用先进的纳米工程给药技术靶向 SNHG1,有可能减轻小胶质细胞缺血再灌注损伤。这为缺血性癫痫的治疗提供了令人鼓舞的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanoengineered therapeutic strategies targeting SNHG1 for mitigating microglial ischemia-reperfusion injury implications for hypoxic-ischemic encephalopathy

The purpose of this work is to investigate the function of SNHG1, a long non-coding RNA implicated in disease progression, apoptosis, and proliferation, in order to solve the problem of hypoxic-ischemic encephalopathy (HIE) in newborn care. We investigated the impact of overexpressing SNHG1 on hypoxia-induced apoptosis and studied its expression in BV2 microglial cells under hypoxic circumstances. As a result of modifying YY1 expression, SNHG1′s overexpression prevents apoptosis, as our data demonstrate that it is considerably downregulated under hypoxia. We demonstrate that SNHG1 might potentially reduce microglial ischemia-reperfusion damage by using sophisticated nanoengineering drug delivery technologies to target it. This provides encouraging information for the therapy of ischemic epilepsy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
期刊最新文献
Model-Based Interactive Visualization for Complex Systems Requirements and Design in Joint Tests. Implementing enclosed sterile integrated robotic platforms to improve cell-based screening for drug discovery. Life Sciences Discovery and Technology Highlights. Notes on AEMS methods development for high throughput experimentation in drug discovery. Prosthesis repair of oral implants based on artificial intelligenc`e finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1