{"title":"局部链刚度对熔体低聚物结晶的影响","authors":"Pierre Kawak, Christopher Akiki, Douglas R. Tree","doi":"10.1103/physrevmaterials.8.075606","DOIUrl":null,"url":null,"abstract":"While the process by which a polymer crystal nucleates from the melt has been extensively studied via molecular simulation, differences in polymer models and simulated crystallization conditions have led to seemingly contradictory results. We make steps to resolve this controversy by computing low-temperature phase diagrams of oligomer melts using Wang-Landau Monte Carlo simulations. Two qualitatively different crystallization mechanisms are possible depending on the local bending stiffness potential. Polymers with a discrete bending potential crystallize via a single-step mechanism, whereas polymers with a continuous bending potential can crystallize via a two-step mechanism that includes an intermediate nematic phase. Other model differences can be quantitatively accounted for using an effective volume fraction and a temperature scaled by the bending stiffness. These results suggest that at least two universality classes of nucleation exist for melts and that local chain stiffness is a key determining factor in the mechanism of nucleation.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"99 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of local chain stiffness on oligomer crystallization from a melt\",\"authors\":\"Pierre Kawak, Christopher Akiki, Douglas R. Tree\",\"doi\":\"10.1103/physrevmaterials.8.075606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the process by which a polymer crystal nucleates from the melt has been extensively studied via molecular simulation, differences in polymer models and simulated crystallization conditions have led to seemingly contradictory results. We make steps to resolve this controversy by computing low-temperature phase diagrams of oligomer melts using Wang-Landau Monte Carlo simulations. Two qualitatively different crystallization mechanisms are possible depending on the local bending stiffness potential. Polymers with a discrete bending potential crystallize via a single-step mechanism, whereas polymers with a continuous bending potential can crystallize via a two-step mechanism that includes an intermediate nematic phase. Other model differences can be quantitatively accounted for using an effective volume fraction and a temperature scaled by the bending stiffness. These results suggest that at least two universality classes of nucleation exist for melts and that local chain stiffness is a key determining factor in the mechanism of nucleation.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.075606\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.075606","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of local chain stiffness on oligomer crystallization from a melt
While the process by which a polymer crystal nucleates from the melt has been extensively studied via molecular simulation, differences in polymer models and simulated crystallization conditions have led to seemingly contradictory results. We make steps to resolve this controversy by computing low-temperature phase diagrams of oligomer melts using Wang-Landau Monte Carlo simulations. Two qualitatively different crystallization mechanisms are possible depending on the local bending stiffness potential. Polymers with a discrete bending potential crystallize via a single-step mechanism, whereas polymers with a continuous bending potential can crystallize via a two-step mechanism that includes an intermediate nematic phase. Other model differences can be quantitatively accounted for using an effective volume fraction and a temperature scaled by the bending stiffness. These results suggest that at least two universality classes of nucleation exist for melts and that local chain stiffness is a key determining factor in the mechanism of nucleation.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.