欧洲海洋鱼类群落分类和功能组成的长期变化

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Ecography Pub Date : 2024-07-22 DOI:10.1111/ecog.07234
Aurore Receveur, Fabien Leprieur, Kari E. Ellingsen, David Keith, Kristin M. Kleisner, Matthew McLean, Bastien Mérigot, Katherine E. Mills, David Mouillot, Marta Rufino, Isaac Trindade-Santos, Gert Van Hoey, Camille Albouy, Arnaud Auber
{"title":"欧洲海洋鱼类群落分类和功能组成的长期变化","authors":"Aurore Receveur,&nbsp;Fabien Leprieur,&nbsp;Kari E. Ellingsen,&nbsp;David Keith,&nbsp;Kristin M. Kleisner,&nbsp;Matthew McLean,&nbsp;Bastien Mérigot,&nbsp;Katherine E. Mills,&nbsp;David Mouillot,&nbsp;Marta Rufino,&nbsp;Isaac Trindade-Santos,&nbsp;Gert Van Hoey,&nbsp;Camille Albouy,&nbsp;Arnaud Auber","doi":"10.1111/ecog.07234","DOIUrl":null,"url":null,"abstract":"<p>Evidence of large-scale biodiversity degradation in marine ecosystems has been reported worldwide, yet most research has focused on few species of interest or on limited spatiotemporal scales. Here we assessed the spatial and temporal changes in the taxonomic and functional composition of fish communities in European seas over the last 25 years (1994–2019). We then explored how these community changes were linked to environmental gradients and fishing pressure. We show that the spatial variation in fish species composition is more than two times higher than the temporal variation, with a marked spatial continuum in taxonomic composition and a more homogenous pattern in functional composition. The regions warming the fastest are experiencing an increasing dominance and total abundance of r-strategy fish species (lower age of maturity). Conversely, regions warming more slowly show an increasing dominance and total abundance of K-strategy species (high trophic level and late reproduction). Among the considered environmental variables, sea surface temperature, surface salinity and chlorophyll-a most consistently influenced communities' spatial patterns, while bottom temperature and oxygen had the most consistent influence on temporal patterns. Changes in communities' functional composition were more closely related to environmental conditions than taxonomic changes. Our study demonstrates the importance of integrating community-level species traits across multi-decadal scales and across a large region to better capture and understand ecosystem-wide responses and provides a different lens on community dynamics that could be used to support sustainable fisheries management.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 9","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07234","citationCount":"0","resultStr":"{\"title\":\"Long-term changes in taxonomic and functional composition of European marine fish communities\",\"authors\":\"Aurore Receveur,&nbsp;Fabien Leprieur,&nbsp;Kari E. Ellingsen,&nbsp;David Keith,&nbsp;Kristin M. Kleisner,&nbsp;Matthew McLean,&nbsp;Bastien Mérigot,&nbsp;Katherine E. Mills,&nbsp;David Mouillot,&nbsp;Marta Rufino,&nbsp;Isaac Trindade-Santos,&nbsp;Gert Van Hoey,&nbsp;Camille Albouy,&nbsp;Arnaud Auber\",\"doi\":\"10.1111/ecog.07234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Evidence of large-scale biodiversity degradation in marine ecosystems has been reported worldwide, yet most research has focused on few species of interest or on limited spatiotemporal scales. Here we assessed the spatial and temporal changes in the taxonomic and functional composition of fish communities in European seas over the last 25 years (1994–2019). We then explored how these community changes were linked to environmental gradients and fishing pressure. We show that the spatial variation in fish species composition is more than two times higher than the temporal variation, with a marked spatial continuum in taxonomic composition and a more homogenous pattern in functional composition. The regions warming the fastest are experiencing an increasing dominance and total abundance of r-strategy fish species (lower age of maturity). Conversely, regions warming more slowly show an increasing dominance and total abundance of K-strategy species (high trophic level and late reproduction). Among the considered environmental variables, sea surface temperature, surface salinity and chlorophyll-a most consistently influenced communities' spatial patterns, while bottom temperature and oxygen had the most consistent influence on temporal patterns. Changes in communities' functional composition were more closely related to environmental conditions than taxonomic changes. Our study demonstrates the importance of integrating community-level species traits across multi-decadal scales and across a large region to better capture and understand ecosystem-wide responses and provides a different lens on community dynamics that could be used to support sustainable fisheries management.</p>\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":\"2024 9\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07234\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07234\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07234","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

世界各地都有关于海洋生态系统生物多样性大规模退化的证据报道,但大多数研究都集中在少数感兴趣的物种或有限的时空尺度上。在此,我们评估了过去 25 年(1994-2019 年)欧洲海域鱼类群落分类和功能组成的时空变化。然后,我们探讨了这些群落变化与环境梯度和捕捞压力之间的关系。我们发现,鱼类物种组成的空间变化是时间变化的两倍多,分类组成具有明显的空间连续性,而功能组成则更为单一。气候变暖最快的地区,r-战略鱼类物种(成熟年龄较低)的优势地位和总丰度不断增加。相反,气候变暖较慢的地区,K-战略鱼类(高营养级和晚繁殖)的优势地位和总丰度不断增加。在所考虑的环境变量中,海面温度、表层盐度和叶绿素-a 对群落空间模式的影响最为一致,而底层温度和氧气对时间模式的影响最为一致。与分类学变化相比,群落功能组成的变化与环境条件的关系更为密切。我们的研究表明,整合跨十年尺度和跨大区域的群落级物种特征对于更好地捕捉和理解整个生态系统的响应非常重要,并为群落动态提供了一个不同的视角,可用于支持可持续渔业管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long-term changes in taxonomic and functional composition of European marine fish communities

Evidence of large-scale biodiversity degradation in marine ecosystems has been reported worldwide, yet most research has focused on few species of interest or on limited spatiotemporal scales. Here we assessed the spatial and temporal changes in the taxonomic and functional composition of fish communities in European seas over the last 25 years (1994–2019). We then explored how these community changes were linked to environmental gradients and fishing pressure. We show that the spatial variation in fish species composition is more than two times higher than the temporal variation, with a marked spatial continuum in taxonomic composition and a more homogenous pattern in functional composition. The regions warming the fastest are experiencing an increasing dominance and total abundance of r-strategy fish species (lower age of maturity). Conversely, regions warming more slowly show an increasing dominance and total abundance of K-strategy species (high trophic level and late reproduction). Among the considered environmental variables, sea surface temperature, surface salinity and chlorophyll-a most consistently influenced communities' spatial patterns, while bottom temperature and oxygen had the most consistent influence on temporal patterns. Changes in communities' functional composition were more closely related to environmental conditions than taxonomic changes. Our study demonstrates the importance of integrating community-level species traits across multi-decadal scales and across a large region to better capture and understand ecosystem-wide responses and provides a different lens on community dynamics that could be used to support sustainable fisheries management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
期刊最新文献
Colonization and extinction lags drive non-linear responses to warming in mountain plant communities across the Northern Hemisphere Differential predation patterns of free-ranging cats among continents Competitive interactions modify the direct effects of climate Achieving higher standards in species distribution modeling by leveraging the diversity of available software Seasonal macro-demography of North American bird populations revealed through participatory science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1